Are Autonomous Mobile Robots Able to Take Over Construction? A Review

Document Type : Review Article


École polytechnique Fédéral de Lausanne, Lausanne, Switzerland


Although construction has been known as a highly complex application field for autonomous robotic systems, recent advances in this field offer great hope for using robotic capabilities to develop automated construction. Today, space research agencies seek to build infrastructures without human intervention, and construction companies look to robots with the potential to improve construction quality, efficiency, and safety, not to mention flexibility in architectural design. However, unlike production robots used, for instance, in automotive industries, autonomous robots should be designed with special consideration for challenges such as the complexity of the cluttered and dynamic working space, human-robot interactions and inaccuracy in positioning due to the nature of mobile systems and the lack of affordable and precise self-positioning solutions. This paper briefly reviews state-of-the-art research into automated construction by autonomous mobile robots. We address and classify the relevant studies in terms of applications, materials, and robotic systems. We also identify ongoing challenges and discuss about future robotic requirements for automated construction.


[1]    “Construction”, Oxford English Dictionary. Oxford University Press.
[2]    K. S. Saidi, J. B. O’Brien, and A. M. Lytle, “Robotics in Construction,” in Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Springer, (2008), pp. 1079–1099.
[3]    L. Cousineau and N. Miura, “Construction Robots: The Search for New Building Technology in Japan”, ASCE, (1998).
[4]    N. P. Hack, W. V Lauer, F. M. Gramazio, M. Kohler, and N. Blank, “Method of fabricating a 3-dimensional structure, mesh formwork element for fabricating a 3-dimensional structure, and method of fabricating the same”, Google Patents, (2015).
[5]    V. Helm, S. Ercan, F. Gramazio, and M. Kohler, “Mobile robotic fabrication on construction sites: DimRob,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, (2012), pp. 4335–4341.
[6]    J. Willmann, F. Augugliaro, T. Cadalbert, R. D’Andrea, F. Gramazio, and M. Kohler, “Aerial Robotic Construction Towards a New Field of Architectural Research,” Int. J. Archit. Comput., Vol. 10, (2012), pp. 439–460.
[7]    S. Wismer, G. Hitz, M. Bonani, A. Gribovskiy, and S. Magnenat, “Autonomous construction of a roofed structure: Synthesizing planning and stigmergy on a mobile robot,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, (2012), pp. 5436–5437.
[8]    R. A. Rihani and L. E. Bernold, “Computer Integration for Robotic Masonry,” Comput. Civ. Infrastruct. Eng., Vol. 9(1), (1994), pp. 61–67.
[9]    G. Pritschow, M. Dalacker, J. Kurz, and M. Gaenssle, “Technological aspects in the development of a mobile bricklaying robot,” Autom. Constr., Vol. 5(1), (1996), pp. 3–13.
[10]  “Tiger Stone Website,” 2015. [Online]. Available: [Accessed: 08-Dec-2015].
[11]  E. Mekinc, “D.C.’S FIRST BRICK-LAYING ROBOT IN ACTION,” (2015). [Online]. Available: [Accessed: 08-Dec-2015].
[12]  M. A. Goodrich and A. C. Schultz, “Human-robot Interaction: A Survey,” Found. Trends Hum.-Comput. Interact., Vol. 1(3), (2007), pp. 203–275.
[13]  Q. Lindsey, D. Mellinger, and V. Kumar, “Construction of Cubic Structures with Quadrotor Teams,” in Robotics: Science and Systems, (2011).
[14]  F. Nigl, S. Li, J. E. Blum, and H. Lipson, “Structure-Reconfiguring Robots: Autonomous Truss Reconfiguration and Manipulation,” Robot. Autom. Mag. IEEE, Vol. 20(3), (2013), pp. 60–71.
[15]  S. Shepherd and A. Buchstab, “KUKA Robots On-Site,” in Robotic Fabrication in Architecture, Art and Design 2014, W. McGee and M. de Leon, Eds. Springer International Publishing, (2014), pp. 373–380.
[16]  B. Khoshnevis, “Automated construction by contour crafting—related robotics and information technologies,” Autom. Constr., Vol. 13(1), (2004), pp. 5–19.
[17]  F. Gramazio and M. Kohler, Made by robots: challenging architecture at a larger scale. John Wiley & Sons, (2014).
[18]  R. P. Hoyt, J. I. Cushing, J. T. Slostad, G. Jimmerson, T. Moser, G. Kirkos, M. L. Jaster, and N. R. Voronka, “SpiderFab: An Architecture for Self-Fabricating Space Systems,” Am. Inst. Aeronaut. Astronaut, (2013), p. 5509.
[19]  S. Jokic, P. Novikov, S. Maggs, D. Sadan, S. Jin, and C. Nan, “Robotic positioning device for three-dimensional printing,” in CoRR, , Vol. abs/1406.3, (2014).
[20]  P. Rétornaz, “Construction par procédé additif réalisée avec des robots mobiles autonomes hétérogènes,” EPFL, (2015).
[21]  M. B. Griggs, “Robots can now 3D-print steel bridges,” 2015. [Online]. Available: [Accessed: 08-Dec-2015].
[22]  N. Napp and R. Nagpal, “Robotic Construction of Arbitrary Shapes with Amorphous Materials,” in Conf on Robotics and Automation (ICRA), (2014).
[23]  N. Napp, O. R. Rappoli, J. M. Wu, and R. Nagpal, “Materials and mechanisms for amorphous robotic construction,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, (2012), pp. 4879–4885.
[24]  T. Soleymani, V. Trianni, M. Bonani, F. Mondada, and M. Dorigo, “Bio-inspired construction with mobile robots and compliant pockets,” Rob. Auton. Syst., Vol. 74, (2015), pp. 340–350.
[25]  N. Napp and R. Nagpal, “Distributed amorphous ramp construction in unstructured environments,” in Symposium on Distributed Autonomous Robotic Systems (DARS), Vol. 32(2), (2012), pp. 279–290.
[26]  R. Fujisawa, N. Nagaya, S. Okazaki, R. Sato, Y. Ikemoto, and S. Dobata, “Active modification of the environment by a robot with construction abilities,” ROBOMECH J., Vol. 2(1), (2015), pp. 1–11.
[27]  J. Werfel, K. Petersen, and R. Nagpal, “Designing collective behavior in a termite-inspired robot construction team.,” Science, Vol. 343(6172), (2014), pp. 754–758.
[28]  Y. Terada and S. Murata, “Automatic Modular Assembly System and its Distributed Control,” I. J. Robot. Res., Vol. 27(3-4), (2008), pp. 445–462.
[29]  K. C. Galloway, R. Jois, and M. Yim, “Factory floor: A robotically reconfigurable construction platform,” in Robotics and Automation (ICRA), 2010 IEEE International Conference on, (2010), pp. 2467–2472.
[30]  N. Gershenfeld, M. Carney, B. Jenett, S. Calisch, and S. Wilson, “Macrofabrication with Digital Materials: Robotic Assembly,” Archit. Des., Vol. 85(5), (2015), pp. 122–127.
[31]  J. Hiller and H. Lipson, “Design and analysis of digital materials for physical 3D voxel printing,” Rapid Prototyp. J., Vol. 15(2), (2009), pp. 137–149.
[32]  P. Zarafshan and A. A. Moosavian, “Manipulation Control of a Flexible Space Free Flying Robot Using Fuzzy Tuning Approach,” Int. J. Robot., Vol. 4(2), (2015), pp. 9-18.
[33]  S. Magnenat, R. Philippsen, and F. Mondada, “Autonomous construction using scarce resources in unknown environments,” Auton. Robots, Vol. 33(4), (2012), p. 487.
[34]  A. Stroupe, A. Okon, M. Robinson, T. Huntsberger, H. Aghazarian, and E. Baumgartner, “Sustainable cooperative robotic technologies for human and robotic outpost infrastructure construction and maintenance,” Auton. Robots, Vol. 20(2), (2006), pp. 113–123.
[35]  D. H. Jung, J. Park, and M. Schwartz, “Towards on-site autonomous robotic floor tiling of mosaics,” in Control, Automation and Systems (ICCAS), 2014 14th International Conference on, (2014), pp. 59–63.
[36]  K. Dörfler, T. Sandy, M. Giftthaler, F. Gramazio, M. Kohler, and J. Buchli, “Mobile Robotic Brickwork - Automation of a Discrete Robotic Fabrication Process Using an Autonomous Mobile Robot,” in Robotic Fabrication in Architecture, Art and Design, (2016).
[37]  H. Ardiny, S. Witwicki, and F. Mondada, “Autonomous Construction of Separated Artifacts by Mobile Robots using SLAM and Stigmergy,” in Conference on Autonomous and Robotic Construction of Infrastructure, (2015), pp. 90–97.
[39]  J. Korb and K. E. Linsenmair, “The architecture of termite mounds: a result of a trade-off between thermoregulation and gas exchange?,” Behav. Ecol., Vol. 10(3), pp. 312–316.
[40]  C. Detrain, J. L. Deneubourg, and J. M. Pasteels, Information processing in social insects. Springer Science & Business Media, (1999).
[41]  W. R. Tschinkel, “The nest architecture of the Florida harvester ant, Pogonomyrmex badius,” J. Insect Sci., Vol. 4(1), (2004), p. 21.
[42]  M. Hansell, Built by animals: the natural history of animal architecture. Oxford University Press, (2007).
[43]  N. S. Estevez, “Functional Blueprints: A Dynamical Approach to Structure Representation,” Cornell University, (2007).
[44]  I. Navarro and F. Matía, “An Introduction to Swarm Robotics,” ISRN Robot., (2012).
[45]  Y. Mohan and S. G. Ponnambalam, “An extensive review of research in swarm robotics,” in Nature Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, (2009), pp. 140–145.
[46]  M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: a review from the swarm engineering perspective,” Swarm Intell., Vol. 7(1), (2013), pp. 1–41.
[47]  C. A. C. Parker and H. Zhang, “Collective Robotic Site Preparation.,” Adapt. Behav., Vol. 14(1), (2006), pp. 5–19.
[48]  J. Werfel, “Building Blocks for Multi-robot Construction,” in Distributed Autonomous Robotic Systems 6, R. Alami, R. Chatila, and H. Asama, Eds. Springer Japan, (2007), pp. 285–294.
[49]  J. Werfel, K. Petersen, and R. Nagpal, “Distributed multi-robot algorithms for the TERMES 3D collective construction system,” in Proceedings of Robotics: Science and Systems VII, (2011).
[50]  J. Werfel and R. Nagpal, “Extended Stigmergy in Collective Construction,” IEEE Intell. Syst., Vol. 21(2), (2006), pp. 20–28.
[51]  J. Werfel, D. Ingber, and R. Nagpal, “Collective construction of environmentally-adaptive structures,” 2007 IEEE/RSJ Int. Conf. Intell. Robot. Syst., (2007), pp. 2345–2352.
[52]  C. Melhuish, J. Welsby, and C. Edwards, “Using templates for defensive wall building with autonomous mobile antlike robots,” in Proceedings of Towards Intelligent Mobile Robots (TIMR’99), (1999).
[53]  B. P. Sellner, F. Heger, L. Hiatt, R. Simmons, and S. Singh, “Coordinated Multi-Agent Teams and Sliding Autonomy for Large-Scale Assembly,” Proc. IEEE - Spec. Issue Multi-Robot Syst., Vol. 94(7), (2006), pp. 1425–1444.