
International Journal of Robotics, Vol. 6, No. 1, (2020), A. Parvaresh and S. A. A. Moosavian, 53-63 

 

 

*. corresponding author: K. N. Toosi University of Technology, Tehran, Iran, 

Email adress: moosavian@kntu.ac 

 
Experimental Identification and Hybrid PID-Fuzzy 

Position Control of Continuum Robotic Arms 
  

A. Parvaresha, S. A. A. Moosaviana ,* 
a Center of Excellence in Robotics and Control, Advanced Robotics & Automated Systems (ARAS) Laboratory 

Faculty of Mechanical Engineering, K. N. Toosi University of Technology 

 

A R T I C L E   I N F O   A B S T R A C T  

Article history: 

Received: 1 October 2019 

Received in revised form: 15 February 

2020 

Accepted: 3 March 2020  

 Continuum robotic arms that are inspired from nature, have many advantages compared 

to traditional robots, which motivate researchers in this field. Dynamic modeling and 

controlling these robots are challenging subjects due to complicated nonlinearities and 

considerable uncertainties existing in these structures. In this paper, first a dynamic three-

dimensional model of the continuum robotic arm is developed as a black-box model 

through system identification method. The validity of the obtained model is confirmed 

by the experimental data. Then, by using the obtained model, a hybrid PID-fuzzy 

controller, which is considered as a model-free controller and does not require the exact 

model of the system is employed for controlling the position of the end-effector. Finally, 

obtained results and the performance of the controller in reaching to different positions 

of the workspace, either trained or not, is discussed. 
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1. Introduction  

Continuum robotic arms are the class of robots that 

are inspired from the nature and inherent capabilities of 

creatures such as elephant’s trunk, octopus arms, squid 

tentacles and etc. As defined in [1], a continuum 

manipulator is a continuously bending, infinite-degree 

of-freedom robot with an elastic structure.  These 

manipulators can handle the difficulties encountered in 

the rigid robotics area, such as problems in the 

unstructured environments, grasping un-programmed 

objects, undesired collision with the obstacles in the 

environment, and higher energy consumption by their 

inherent capabilities and can be constructed with larger 

workspace, higher operational speed, smaller actuators, 

higher maneuverability, and safer operation [2]. 

Tendon-driven continuum manipulators are one of the 

most common continuum manipulators according to 

their amazing advantages in generation of higher forces, 

realizable design and structure, and external actuation, 

which made them smaller and safer in comparison with 

the other types of continuum manipulator such as 

concentric tubes. These manipulator have an elastic 

backbone, the configuration of which can be controlled 

by a set of tendons that are fixed parallel with respect to 

the tendons [3]. These types are mostly used in 

minimally invasive surgeries (MIS) [4], under-water [5] 

and space applications [6].  

Kinematic model relates the variables in the 

configuration space to the variables in task and actuator 

spaces [7]. Different methods have been proposed for 

kinematic modeling of continuum robots. In [8], by 

assuming a constant curvature for two dimensional 
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backbone of the robot, kinematics of the robot was 

modeled using D-H approach. In [9], the same procedure 

was performed for a three-dimensional multi-section 

robot. Instead of using a circular arc for whole body, 

Hannan and Walker [9], used piecewise circular arcs for 

each section of the robot, in which the curvature was 

different in each section and then the closed-form 

solutions were obtained for the kinematics of the robot. 

For more exact solution, Dehgani and Moosavian [10] 

used Cosserat rod theory for static modeling of the 

continuum robotic arm. Due to the complexity of 

extracting closed-form static and dynamic models, In 

[11], Yip et al, used empirical Jacobian method for 

extracting the dynamics of the robot for using in control 

applications. Renda et al, [12] modified the continuum 

Cosserat approach, which can be discretized in a finite 

number of sections and degrees of freedom. In this 

model, torsion and shears strains were also considered 

and the dynamic model was obtained. 

Controlling Continuum robotic arms involves many 

challenges according to their under actuated structure 

and infinite degrees of freedom, non-accurate modeling, 

nonlinearity, uncertainty and lack of direct relationship 

between the actuation variables and configuration 

variables. Therefore, investigations in the field of 

continuum robot control are in the first steps and many 

improvements should be conducted [13]. Control 

strategies can be classified into three main groups: 

model-based controllers, which rely on the analytical 

methods, model-free controllers, which uses intelligent 

techniques or empirical methods, and hybrid controllers, 

which combines the both methods for designing the 

controller [14]. 

Model-based static controllers are the most studied 

strategies according to the simplicity and availability of 

the static models. In [15], a closed-loop controller in the 

task space was proposed for controlling the end-effector 

of a tendon-driven continuum robot using D-H 

kinematic model. In [16], a controller in the 

configuration space was proposed. In this method, the 

information about the configuration of the robot was 

obtained using external sensory information and the 

stability of the controller proved by Lyapunov's direct 

method. In [17], a closed-loop position-feedback 

kinematic controller was proposed for the constant-

curvature based model of a tendon-driven robot, and a 

quadratic programming algorithm is incorporated into 

the controller. 

According to the fact that model-free static 

controllers do not require any analytical models, more 

complex kinematic models can be developed according 

to the sampled data. These techniques shows better 

performance in highly nonlinear, non-uniform, and 

influenced by gravity systems and are relatively new 

field[14]. In [11], a closed-loop controller was proposed 

using an optimal control strategy for a tendon-driven 

continuum robot based on the empirical estimation of the 

kinematic Jacobian matrix. This controller did not rely 

on model and could be used in constrained 

environments. In [18], the same approach was extended 

for force/position hybrid control, in which the stiffness 

matrix was also computed empirically. In [19], a 

learning approach was used for modeling and control of 

a continuum robot. In this research, neural network 

model was used for learning the kinematics and it was 

validated experimentally, then this model was used for 

controlling the continuum robot, and its real-time 

implementation allowed controlling of the end-effector 

position [1]. 

PID controllers are classified as model-free 

controllers and provide a relatively simple structure 

along with robust performance. The performances of 

these controllers are highly dependent on the selection 

of PID gains, which is difficult procedure if some 

uncertainties exist. Fuzzy logic-based controllers 

employ approximate reasoning as the decision making 

process in humans. These controllers are also do not rely 

on the mathematical model of the plant. 

To profit the advantages of these two types of 

controllers, hybrid PID-Fuzzy controllers are proposed. 

These controllers have self -tuning features and are 

applicable in nonlinear time-varying systems with 

uncertainties. The gains of PID in these hybrid 

controllers are tuned by incremental fuzzy logic 

controller.  

In this paper, due to the mentioned problems in 

modeling of the continuum robots analytically, we aim 

to model the robot through the system identification of 

the robot, so solving the complicated equations is 

eliminated and a three dimensional model of the robot is 

developed using NARX (nonlinear autoregressive 

model with exogenous input) model. The validity of the 

obtained model is confirmed by the experimental data. 

Despite the model-based controllers, which require 

analytical model of the robot, in order to control the 

position of the end-effector with the proposed model, a 

PID controller, which is considered as a model-free 

controller and do not require exact model is used and its 

coefficients are tuned using fuzzy interface system. 

The rest of the paper is organized as follows: In 

section II, the actuation and sensing system of the 

continuum robot is demonstrated, next, in section III, the 

modeling procedure of the robot using data-driven 

system identification is explained and validated. The 

hybrid control scheme for positioning the end-effector of 

the continuum arm in the desired position is detailed in 

section IV. After that, in section V, the results of the 

robot simulation is provided and finally, section VI is 

dedicated to the conclusion. 
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2. System description 

The continuum robotic arm studied in this paper is a 

tendon-driven two-section arm with a flexible backbone. 

By applying the forces to the tendons, the shape and 

position of the robot can be controlled. This robot is 

classified as external actuation systems. The schematic 

and real continuum robotic arm along with the backbone, 

spacers, guides and tendons are depicted in Fig. 1.  

The total length of the robot is 593 milliliters and it is 

divided into two sections. Each section has three tendons 

that are fixed parallel with respect to the backbone by 

spacers in each 3 centimeter distance. The tendons are 

placed radially with respect to the backbone with the 

radial space of 120 degrees. In the actuation system, six 

Dynamixel servo motors (AX-12) are used for applying 

the force to the tendons and also six load cells are 

provided for sensing the applied forces. The image 

processing technique is used to capture the position of 

the end effector and any other point in the manipulator 

backbone. Two A4-tech PK7 cameras, which are placed 

in fixed distances with respect to the continuum structure 

are used to capture the precise position of the continuum 

robotic arm. The internal parameters of these cameras 

are adjustable, so, they are adjusted to enhance the 

quality and accuracy of the recorded image. Also, 

several LEDs are implemented on the manipulator body 

as well as in different corners of the box, in which the 

system is placed, in order to facilitate the calibration 

process. Before each run, the system is first calibrated 

and then the accurate position of the desired point in the 

body of the manipulator is recorded by the embedded 

cameras. 

The schematic of the systems components and their 

connection is represented in Fig. 2. In addition, the 

properties of the system are provided in Table I. As 

shown in the Figure, first the written code in the Matlab 

environment is run and the appropriate signals are sent 

to the microcontroller (PIC32) through RS 232 serial 

port. Then the position/force commands are sent to the 

motor; after gathering the data from load cells and 

cameras, which are considered as the sensing system, the 

input-output data set is recorded for system 

identification purposes. After that the model is obtained, 

the control scheme can be also implemented on the 

system.  

Backbone

Spacer

Guide

Tendon

 

Fig1. The shcematic of the Continuum robotic arm 

PIC 32

Micro controller

Load cells

Dynamixel Motors

Fig2. Shematic of the cameras, motors, loadcells and 

their connection to the PC 

 

Table1. Characteristics of the system 

Robot type 
Tendon-driven 
backbone 

Type of actuation Externally 

Number of sections 2 

Radial distance of tendons  120 degrees 

Number of tendon in each section 3 

Total degrees of freedom (actuation) 6 

Total length 593mm 

Backbone Diameter 1mm 

Motor type  Dynamixel AX-12 

Distance between spacers  3 cm 

Backbone Elasticity Modulus 203Gpa 
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3. Identification procedure 

In this paper, according to the complexities of the 

dynamic model and the effect of different factors, which 

cannot be modeled, the system identification (SI) is used 

to extract a reliable and acceptable model for the robot. 

The flowchart of this process is explained in Fig. 3. 

According to this figure, the first step is to determine the 

excitation signal, and gathering a set of input-output data 

for training the model. Then the identification is 

conducted by selecting an appropriate structure and 

parameters; after that the system is estimated, the 

validity of the model can be verified by comparing the 

obtained results from the plant with the collected 

experimental data. 

 

3.1. Excitation signals 

One of the most important steps in system 

identification is the design of suitable excitation signals 

in order to gather identification data-sets. This feature is 

of great significance especially in nonlinear 

identification due to the complexity of the desired 

system, in which more information is required for 

modeling. The excitation signals should be chosen with 

enough care so that the possibility of gathering much 

information about the system is provided.  

Design of 

Experiment

Excitation 

Signal

Data 

Acquisition
Data Process

Model Structure 

Selection

Model order 

Selection

Model 

Parameter 

Selection

Model 

Estimation

Model 

Validation

Is Model 

Correct ModelYes

No

Start

End

 
Fig3. The flowchart of system identification 

 

Different excitation signals can be used to excite the 

system for gathering data, including sine signals, step 

signals, PBRS and APRBS signals, etc. In excitation 

with sine signals, the information is collected in a 

particular frequency and the model quality would be 

excellent in the selected frequency. So, if the model is to 

be used in particular frequency, the combination of sine 

waves is the best selection for the excitation signal. 

Therefore, as the studied robot is used in particular 

frequencies, in this research, we use Sine signal with 

different frequencies and amplitudes as depicted in Fig. 

4 and determined by Eq. 1 . 

 
1

Sin( )
n

i i

i

u A t
=

=   (1) 

In this equation, u is the excitation signal, 
i

A is the 

amplitude of sine signal; 
i

 is the sampling frequency 

and t is the time. Sampling frequency should be selected 

considering that even the small variations in the system 

output can be captured. In addition, the amplitudes 

should be chosen to cover all the feasible workspace of 

the system. These excitation signals are applied to the 

servomotors as inputs, which are transformed to the 

continuum manipulator using RS 323 cable, and then, 

image processing system, provides the outputs 

 

3.2. Data acquisition 

According to the structure of the continuum robot, the 

positions of the 6 motors are used as inputs as follows: 

  1 2 3 4 5 6
P P P P P P=P   (2) 

And position of the end-effector is used as the outputs 

of the system: 

 ee ee ee
x y z=X  

 

As can be seen in Fig. 4, the input-output data are 

recorded in the computer. The sampling time is 6s, 

meaning that in 6 seconds, a complete series of input-

output signals are sampled. The sampling time is 

selected so that the robot’s motion can be considered as 

semi-static and severe vibrations are prevented. It is 

worth to mention that in designing the system hardware, 

some filters have been used to eliminate the noises in 

data, because incorrect reading would result in loss of 

quality and even, error in modeling the continuum robot. 

Consequently, in later use of the model, for example in 

control applications, it may cause the instability of the 

controller. In Fig. 5 the workspace of the robot 

corresponding to the excitation signals can be observed. 

As it is obvious, it is tried to cover all the feasible 

workspace of the robot for training. 
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Fig4. Excitation data for system identification 

 

Fig5. The workspace of the continuum robot 

 

3.3. Identification structure 

In this step, first the type of problem should be 

specified; it should be clear that the proposed model is 

to be used for classification, optimization, static or 

dynamic identification. In addition, the existing 

constraints such as computational cost, training time, 

evolution time and so on, should be considered to choose 

the appropriate structure.  Nonlinear autoregressive 

network with exogenous inputs (NARX) is a recurrent 

dynamic network, with feedback connections enclosing 

several layers of the network. Since the continuum 

robotic arm is a nonlinear system, this structure would 

be an appropriate choice for the model. The model can 

be written as follows: 

ˆ( ) ( ( ))y k f k=   (3) 

Where, ( )k is the regression vector, which contains 

previous and current process input, previous model 

outputs, and previous prediction errors. (.)f  is 

unknown nonlinear function that can be achieved by 

implementing the gathered data sets. In fact, the problem 

of estimating unknown parameters in linear 

identification is extended to the approximation of 

nonlinear function of (.)f . 

 The detailed procedure is provided in [21]. The 

model can be approximated by the following equation: 

 
1

( )
i i

n

i

y f w x b

=

= +
 
 
 
   (4) 

 

In this equation, y  is the output of the system;  
i  is 

the weight for each input, and b  is the bias. 

The structure of the system identification procedure 
is shown in Fig. 6. As shown in this figure, and provided 
in Table II, the structure is consisted of 18 inputs, 3 
outputs and 10 hidden layer. These parameters are 
selected after several try and errors. It was found that 
further increasing in the value of the parameters, increase 
the computational costs considerably; while the accuracy 
and precision of the model is not changed significantly.  
The hidden layer poses 10 neurons with hyperbolic 
tangent sigmoid transfer function and also, a linear 
transfer function has been used for the output layer. The 
training function is selected to be Levenberg-Marquette 
algorithm according to the fact that it is the fastest 
training algorithm for network of moderate size; in 
addition, for performance evaluation, mean squared error 
(MSE) is selected. Finally, for training the CFFNN  
(cascade feed forward neural network), 2798 data with 
0.05 second sample time were employed and for testing 
the trained model, the validation data sets in the same 
operating range and number with train data were used.  

 

3.4. Model validation 

The first step for validating the identified model is to 

evaluate the model on the training data. Although the 

performance on training data is necessary, but it is not 

sufficient. If an acceptable performance is achieved on 

the train data, then the model should be evaluated by 

fresh test data. The aim of modeling is to provide a 

model that performs well on the fresh and unseen test 

data. So the gathered data should be divided into 

separate training and testing data sets. In addition, the 

regression diagram is also plotted for the estimated data. 

The estimated model is of good quality if the difference 

between the measured values and predicted values are 

narrow and close to 1. 
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Inputs 

Hidden Layer Output Layer

OutputsF 
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F 

Activation
+ +

iw

iw
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Fig6. Structure of the system identification procedure 

 

 

Table2. the specification of the training system 

Neural Network Type Cascade Feed Forward 

 Inputs 18 

 Outputs 3 

 Hidden Layer 1 

 Neuron in Hidden Layer 10 

 Iteration 250 

Performance Fnc MSE 

Train Fnc Levenberg-Marquette 

 

4. Controller Design 

In this section, design of controller for a continuum 

robotic arm is explained. The NARX model is used as a 

plant and fuzzy-PID controller is used to control.  The 

control objective of hybrid PID-Fuzzy controller is to 

produce control signals so that the end effector of 

manipulator is reached to the desired position in 

minimum time with good response characteristics. 

Fuzzy logic systems are widely used in nonlinear and 

uncertain systems. This system is consisted of 

fuzzification, rule base, interference engine and 

defuzzification sections. Fuzzy logic system can be used 

as a part of adaptive control scheme to tune the 

parameter of the PID-controller and work in parallel 

with it. Fuzzy-PID controllers combine the simplicity of 

PID implementation with the model-free structure of 

fuzzy controllers to overcome the shortcomings of each 

control scheme. The schematic of the controlling plant is 

depicted in Fig. 7, which can be seen with more details 

in Fig. 8. 

 

Fuzzy 

Interface 

System

PID 

Controller

du/dt

Refrence output

Fig7. The schematic of the conrtolling system 

 

 

 

 



International Journal of Robotics, Vol. 6, No. 1, (2020), A. Parvaresh and S. A. A. Moosavian, 53-63 

 

7 

Fig. 8. Implementation of control scheme in Simulink Software 

 

As can be seen from this figure, the reference position 

of the end-effector (xe, ye, ze) is entered to the system and 

its difference with the real output of the plant is 

calculated, so, an error signal is generated. This error 

signal and its derivative are entered to the fuzzy interface 

system and based on the determined rules; three outputs 

are generated to tune the coefficients of PID controller. 

Then the control signals from PID controller are sent to 

the plant, which is the NARX model of the system. The 

transfer function of the controller is defined as: 

 i

c p d

K
G K K S

S
= + +   (5) 

 

K p is the proportional coefficient, Ki  is the integral 

coefficient and K
d

 is the derivative coefficient. These 

coefficients are considered to be bounded and normalized 
as follows: 

 

 , maxmin

min

max min

K K K

K K
K

K K



−
=

−

  (6) 

 

The control signal is defined as: 

 ( ) ( ) ( ) ( )
0

t d
g e K e t K e t dt K e tp i d

dt
= + +   (7) 

 

In which, ( )e t  is the error signal and defined as the 

difference between the desired reference and system  
output as: 

 ( ) ( ) ( )de t x i x i= −   (8) 

 

In which, Ki  is a function of   and defined as 

follows: 

 2K K Kp di =   (9) 

 

The conventional PID controllers do not provide a 

reasonable performance since the gains are considered to 

be constant in all operational conditions; therefore 

tuning algorithms are needed. Fuzzy algorithm would be 

an appropriate choice for tuning the PID gains. The 

membership functions for , , , ( ), ( )K K e t e tp d
 are 

defined as triangular membership function in the defined 

range, and the rule base is generated based on the 

previous knowledge of the system from the experiments 

conducted in the laboratory. The rule-base of the fuzzy 

system for controller gains (Kp, Kd) and   is depicted 

in Fig. 9. According to this figure, first the reference 

values for the x, y and z component of the end-effector 

is defined and entered to the block labeled as ‘x,y,z ref’; 

then the error signal is generated and entered to the fuzzy 

logic controller along with its derivative, the output of 

the fuzzy logic controller generates the tuning 

parameters for the PID coefficients, which are labeled as 

Kp, Kd and KI in the figure, then its applied to the model 

of the robot obtained from system identification and the 

position of the end-effector is obtained. 

 

Table3. Fuzzy Rules for Kp 

( )e t
 pK 

PB PM PS ZO NS NM NB 

B B B B B B B NB  

 
 

 

 

( )e t
 

S B B B B B S NM 

S S B B B S S NS 

S S S B S S S ZO 

S S B B B S S PS 

S B B B B B S PM 

B B B B B B B PB 

 

Table4. Fuzzy Rules for Kd 

( )e t
 dK 

PB PM PS ZO NS NM NB 

S S S S S S S NB  
 

 

 
 

( )e t
  

B B S S S B B NM 

B B B S B B B NS 

B B B B B B B ZO 

B B B S B B B PS 

B B S S S B B PM 

S S S S S S S PB 

 

Table5. Fuzzy Rules for   

( )e t
 

 

PB PM PS ZO NS NM NB 

2 2 2 2 2 2 2 NB  

 
 

 

 

( )e t
  

3 3 2 2 2 3 3 NM 

4 3 3 2 3 3 4 NS 

5 4 3 3 3 4 5 ZO 

4 3 3 2 3 3 4 PS 
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3 3 2 2 2 3 3 PM 

2 2 2 2 2 2 2 PB 

 

 

Fig. 9. Fig9. The rule base of the fuzzy system 

 

5. Results and Discussions 

In this section, the obtained results from the modeling 
and controlling the continuum robotic arm are provided 
and discussed. As was previously mentioned, the model 
of the continuum robotic arm is derived using system 
identification method through the data obtained from the 
experiments conducted on the real system.  

The below figures (figure 10, 11 and 12) represent the 
results for modeling the continuum robotic arm through 
system identification method. It is worth to mention that 
this method is used, because it is more precise and can be 
used in the implementation of the control scheme on the 
real continuum arm, and all the effective parameters are 
considered; however, in the mathematical modeling of 
the robot, some factors including friction, uncertainty and 
… are not considered due to the high nonlinearity and 
complexity. So, neglecting these parameters may cause 
some problems in the implementation on the real system. 
Additionally, the estimation of the model is performed 
on-line, which is important in real-time implementation 
of the controlling scheme in the real robot. However, in 
the models that are obtained through the mathematical 
model, especially dynamic models, the real-time 
implementation is hard to achieve due to the fact that the 
closed-form solution of the mathematical dynamic model 
are very complex and therefore time consuming. 

 

 

Fig 10. The comparison between the experimental data and estimated data, their regression, and error in the X component of the 

end effector position 
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Fig 11. The comparison between the experimental data 

and estimated data, their regression, and error in the Y 

component of the end effector position 

 

Fig 12. The comparison between the experimental data 

and estimated data, their regression, and error in the Z 

component of the end effector position 

As can be seen in the above figures, the SI method can model 

the system acceptably with small error; the error of the 

estimated data in x, y and z component of the end-effector is in 

the scale of 10e-3. The next step is to use the obtained model 

for controlling the robot. A reference in the workspace is 

entered to the model of the robot in SIMULINK environment. 

The aim is that the robot reaches to this position with 

reasonable properties. Two types of reference are chosen as the 

inputs of the systems. The first one is considered in the position 

exactly in the work space of the robot, and the second one is 

considered in the position far from the trained workspace and 

the performance of the controller is compared in both states. 

The first reference point is considered to be 

(100,200,550) mm, which is near the trained workspace; 

the result can be seen in Fig. 13. As can be seen in the 

figure, the controller shows an acceptable response and 

converges to the desired position (x=100mm) without 

any overshoot after about 10 iterations and no steady 

state error is observed. 

The second reference point is considered to be 

(200,400,100) mm, which is not trained and far from the 

trained workspace; the result can be seen in Fig. 14. 

According to this figure, it takes much iteration to reach 

the steady state response. In this case, the response also 

has no overshoot.  

 

Fig 13. The controller response in X direction for a point in 

the trainedwork space 

 

Fig 14. The controller response in X direction for a position 

far from the trained workspace 

Comparing the results, shows that for the first case, 

the steady state of the system is approached in about 10 

iteration, however, in the second case, the steady state is 

not reached completely even after 200 iteration, so, it can 

be concluded that the performance of the controller for 

the points near to the trained positions is much better, 

therefore, it is better to collect more data for training the 

robot and covers all the admissible workspace of the 
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robot. Although it takes more time, but, once the system 

is trained, and the model of the system is extracted, no 

additional time is required and the control can be done 

in real-time.  

 

5. Conclusions 

In this paper, first the structure of the robot, which 

constructed in the laboratory, was demonstrated and it’s 

actuation and sensory system that were required for data 

acquisition was explained. Then, the actuation signals 

and data acquisition procedure was represented. After 

that, due to the complexity of the dynamic model of the 

robot, system identification method was used instead of 

mathematical modeling of the robot. The obtained three-

dimensional dynamic model was validated through the 

experimental results. Then this dynamic model obtained 

form system identification method, which captures the 

whole dynamic of the system was used for control 

purpose, it’s worth to mention that this scheme is 

capable to be implemented in real-time, due to the 

simplicity and on-line estimation of the model, which is 

hardly achieved in mathematical dynamic models, 

because their closed-form solutions are time consuming. 

The PID-fuzzy system was used for controlling the 

system, because it was a model-less controller and does 

not require the exact model of the system and can be 

linked to the SI model. Finally, the performance of the 

system for reaching the points near the trained data and 

far from these data was compared and it was found that 

the performance of the controller is much better near the 

trained data.  
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