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In this paper, kinetic and kinematic modeling of a 4 wheel steering vehicle is done and 

its movement is controlled in an optimal way using Linear Quadratic Regulator (LQR). 

The results are compared with the same control of two-wheel steering case and the 

advantages are analyzed. In 4 wheel steering vehicles which are nowadays more 

applicable the number of controlling actuators are more than the required actuators for 

controllability of the system. As a result, the possible path through which he vehicle can 

move to transfer between two boundaries is not unique and this fact provides the 

possibility of optimization of a desired cost function. In this paper after extracting the 

model of these vehicles based on Jacobian matrix a compromise between the accuracy 

and controlling effort is selected as the mentioned objective function and the optimal 

control and its related optimal path is extracted through which the best accuracy and the 

least input is required. The correctness of modeling and efficiency of the designed 

optimal controller is verified by the aid of a series of simulation scenarios and also 

comparing the results between 4 wheel steering vehicles and 2 wheel steering ones. 
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1. Introduction  

4 wheel steering vehicles are the new generation of 
vehicle in which not only the front wheels are steerable 
but also the rear ones can be steered too. This 
modification increases the number of controlling input 
while the number of workspace states are constant. This 
fact increases the maneuverability of the vehicle and 
provides the possibility of optimization or constraint 
satisfaction during transferring the vehicle between two 
definite boundaries. The constraint satisfaction or 
optimization can be subject to different cost functions. 
The most important application of this kind of 
optimization is parallel parking in which the required 

distance for realizing the displacement between two 
challenging boundaries is significantly less for the 
mentioned 4wheel steering vehicle compared to 2 wheel 
steering one. One of the first issues addressed in the 
study of 4WS is the analysis of kinematics and dynamic 
model, who Spentzas with a particular view made a 
comparison and provided various states of 2WS and 
4WS. He studied another form of the model through 
exploring bicycle model in 4WS state.[1, 2] Singh also 
analyzed and compared 4WS and 2WS and provided the 
pros and cons of them. Furthermore, he provided 
importance and functional states for 4WS [3]. But, in 
these states, there is no analysis of control. Wang 
developed a path planning algorithm base on 4WS 
vehicle kinematics in which velocity and steering angle 
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are two main parts in this algorithm.[4] By exploring 
and experimenting on 4WS and 4WD tractors on 
smooth road, Itoh addressed the effect of velocity on 
body yaw rate and side slip angle which is possible by 
providing dynamic model.[5].In these cases, there is no 
analysis of optimal control inputs. Also, kinematic and 
kinetic analyses have been conducted in various models 
of robot.[6] Xao studied controllability and stability of 
non-holonomic robot through forward and inverse 
kinematics and dynamics. But, no control input have not 
been defined and optimized. In most of the functional 
control algorithms of 4WS used by Haiyan, there is a 
relative gain defined between front and rear wheels 
steering angles. But, this method has only one 
independent control input and process of optimization is 
impossible.[7] Taheri through applying Lyapanov 
stability theory on 4WS model and considering control 
strategy and adaptability rules obtained yaw rate and 
desired lateral velocity.[8] The optimization algorithms 
of these kind of robots can be divided into two main 
categories of open loop and closed loop optimization. In 
open loop optimization, the optimal path of the system 
is extracted subject to the constraints of dynamic 
equations of the vehicle using variation calculations. 
However, these kind of optimizations are not robust 
against uncertainties or external disturbances while the 
feedback of the states are not engaged in. The closed 
loop optimization on the other hand provides a robust 
optimization process which itself can be divided again 
to linear and nonlinear optimization. Linear 
optimizations like Linear Quadratic Regulator (LQR) 
are mostly suitable for the plants with linear dynamics 
while nonlinear ones can provide optimization of 
nonlinear system with higher range of workspace. 
Korayem provided an online computational algorithm 
for tricycle wheeled robots which provides and optimal 
and smooth trajectory with external obstacles for 
actuators, in a way that it reaches the desired final point 
with optimal inputs and without encounter with 
obstacles. A non-holonomic constraint is applied on the 
dynamics of this robot type and a matrix has been 
defined for connection between joint space and work 
space. For 4WS, such connection has not been defined 
yet.[9] In [10] one vehicle is adaptively controlled in a 
way that there is one wheel for control input. Adaptive 
control strategy used in this article is based on low level 
and high level method. but, here optimization of control 
input is overlooked and only the front wheels change 
their orientations. One of the most important advantage 
of 4WS vehicle is their high capability for optimization 
in time of increased number of inputs while the number 
of freedom degree is constant. Higuchi suggested an 
optimal control strategy for 4WS which is based on 
linear quadratic regulation (LQR).[11] Also, similar 
optimal control strategy in [12] is used by Siahkalroudi 
in which there are compensators ZSS and ZYR for the 
linearized model. Furthermore, Mostavi used a pole 
replacement method for stability of linearized system 
while it was controlled by linear quadratic regulation 
(LQR).[13] In the mentioned cases, no comparison was 

made between control input values of 4WS and 2WS. 
Suggesting an integrator control system, Yuqing 
provided a proper performance for non-linear behavior 
of vehicle’s wheels and obtained optimal steering angle 
for front and rear wheels.[14] In [15], providing 4WS 
dynamic model and considering only the angles of front 
and rear wheels as control input, Hongming analyzed 
optimal adaptive control. The amount of wheel force is 
not mentioned in previous articles, but in the present 
article is considered. Akita in [16] studied 4WS vehicle 
and controlled rear steering of wheel using H 

 method 

which is considered as an adaptive control method. This 
case considers instability of trailer. But, rear steering 
angle control is not enough alone and non-linear model 
converted to linear model. Lee helped stability of 
vehicle moving in a direct path encountering lateral 
wind by stability and steering booster systems and 
combining low level controllers using parametric 
optimization method.[17] Suggested control method in 
this article has more validity in comparison to 
parametric optimization method. Meanwhile, in the 
mentioned case, the optimization related to applied 
force on wheels has not been analyzed. For determining 
status of two lateral and orientation motion state 
variables, Matsumoto, in addition to front steering 
angle, considered a control input and compared the 
results of linear quadratic regulation method (LQR) to 
experimental method.[18] It can be seen that in the 
previous researches the velocity kinematics of the 
vehicle is not extracted by the aid of Jacobian matrix of 
the vehicle which is a perquisite of controlling of the 
system. Also the optimization process is not compared 
between 2 wheel steering vehicles and 4 wheel steering 
ones to illustrate the efficiency of the optimization 
process for the latter cases.  To cover the mentioned 
goals, in this paper first of all a bicycle model of 4 
wheel steering vehicle is considered to extract the 
kinematic model of the system using Jacobian matrix. 
Afterwards the dynamics of the same model is modeled 
considering the dynamics and sliding effect of the tires 
using Newton-Euler method. Afterwards both of 2 
wheel steering vehicles and 4 wheel steering ones are 
controlled in an optimal way using LQR to extract the 
optimal path between two definite boundaries and 
compare the results for these two kind of plants. The 
reason of applicability of linear optimization tool of 
LQR for nonlinear dynamics of vehicle is contributed to 
this fact that the linearization of vehicle state space 
around an operating point can be considered 
satisfactorily valid for small and even average range of 
vehicle movement between two boundaries like parallel 
parking. In order to check the correctness of modelling, 
robustness of the controller and also efficiency of the 
optimization, some analytic and comparative simulation 
scenarios are performed in MATLAB and the 
superiority of 4 wheel steering case is proved during the 
optimization process over 2 wheel steering ones. Finally 
it is shown that the proposed optimization method for 
the proposed model of vehicle can successfully guide 
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the vehicle between two definite boundaries with the 
best accuracy and least amount of energy consumption.  

2. Kinematic and Kinetics Modeling 

2.1. Kinematics Model 

There are two methods for modeling vehicle; one 
methods is to consider both the front wheel and rear 
wheel as the two wheels. This method in known as two 
wheel model. The second method is to revealing the 
equations between all four wheels and there is no 
simplification. Thus, we face more nonlinearity. As 
mentioned before, in this paper we use the first model 
i.e. bicycle model, for control analysis. In figure 1, the 
bicycle model is shown as schematic in which the front 
and rear wheels are rotating, each having different 
angle. There are some assumptions for kinematic 
modeling through which we can attain a more simplified 
model. For analyzing kinematics of vehicle according to 
figure 1, we assume there is palatal rigid body motion 
and no wheel slip exists for bicycle model in X-Y fixed 
coordinate plane. With regard to figure 1, point C is 
considered as the center of gravity and the coordinate of 
this point represents the location of vehicle on fixed 
coordinate system. Vector V is linear velocity of vehicle 
in the center of gravity which in fact is the angle 
between longitudinal axis of vehicle and X coordinate. 
Ψ is the heading angle of vehicle. Side-slip angle β is 
the angle between linear velocity vector of center of 
gravity and longitudinal axis of vehicle. vf and vr are 
linear velocity of front and rear wheels in virtual 
location of wheels in bicycle model, respectively. δf and 
δr are steering angle of front and rear wheels, 
respectively; that is the angles between longitudinal axis 
of each wheel and longitudinal axis of vehicle. lf is 
defined as the distance from the center of gravity of 
vehicle to axis of front wheel and lr is defined as the 
distance from the center of gravity of vehicle to axis of 
rear wheel. According to figure 1, kinematics equations 
is as follows: [4] 

cos( )X V  = +     (1) 

sin( )Y V  = +     (2) 

cos (tan tan )f r

f r
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
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=

   (5) 

In equation 5, if we define linear velocity of each 

wheel according to the angular velocity of that wheel, 

we have: 

( )cos ( )cos )

2cos

f f r rr r
V

   



+
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    (6) 

In which, r represents radius of each wheel. In this 
model, by considering angular velocities of wheels 
(ωf,ωr) as input and their relations with state variables 

(Ẋ, Ẏ, ), it can be possible to define certain matrices 

which contain general rotation of vehicle and velocity of 
each wheel. 

 

f

a

r

X

Y J





 
  

=   
  

                                        (7) 

    aJ R J=
                                    (8) 

 

Figure 1. Bicycle model of the vehicle for kinematic 

modeling. 
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In equation (9), lf + lr equals l which is defined as the 
distance of rear and front axis. By substituting beta 
value from equation (4) to equation (9), we can obtain 
matrix Ja according to steering wheel angle and general 
rotation of vehicle.  
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It can be seen that in equation (7), by having steering 
wheel angle velocity as their joint spaces and steering 
angles, we can obtain work space parameters. It should 

be mentioned that for having  on the right side of 

equation, we must with the third joint space , in 
simulation software using integrator and defining initial 
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values. Further, it is possible to obtain joint space from 
work space in inverse state. This allows us to have a 
proper verification for extracted equations. The results 
obtained from forward and inverse kinematics are 
shown in following pages. 

 

2.2. Kinetic model 

As mentioned before, the bicycle model is a known 
model for vehicle modeling in which the front and rear 
wheels are considered as two wheels. In this article, this 
model is used for dynamic analysis. Dynamic of bicycle 
model is shown in figure 2. In this figure, the front and 
rear wheels have different angles. Longitudinal and 
lateral friction forces applied on wheels are Fli and Fsi  
respectively. If we write dynamic equations for vehicle, 
then we obtain state space equations for the system. In 
fact, dynamic equations for system is of significant 
importance because it spans all the necessary state space 
for applying different controls. In the present article, 
Newton-Euler method has been used for obtaining 
dynamic equations for the system. With the assumption 
of fixed coordinate of inertia system and coordinate of 
center of gravity, the velocity equations are expressed 
according to (11): 
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And transporting of fixed coordinate of inertia to 
coordinate of center of gravity: 

                

( )
cos sin sin cos

sin cos cos sin

X

Y
V V

x

y

   
 

   

−        
= = + +        −           (13) 

 

Figure 2. Bicycle model of the vehicle for dynamic modeling. 

With the assumption of lack of gravity forces, 
rolling resistance and velocity and wind force, the 
equation of vehicle’s longitudinal motion using 
Newton’s second law is as (14): 
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sin cos 1

cos sin

xf xr

yf yr

F F
V V

F FM

 
 

 

+ −   
+ + =      +                 (14) 

Here, M is the mass of vehicle. If two rows of matrix 
equation of (14) divides into two algebraic equation: 
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If equation (15) is the product of cosβ and equation 
of (16) is the product of sinβ:  
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By summing two equations of (17), we obtain the 
equation of velocity derivate: 

    ( ) ( )
cos sin
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From equation (16) we can obtain equation based on 
slide slip angle: 

 ( )
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With regard to Euler equation for dynamic model, 
we will have: 

   .( ) .( )yf f f yr r rF l n F l nJ = − − +                 (20) 

nf is the distance of contact point of front wheel with 
ground to lateral axis front chassis and nr is the distance 
of contact point of rear wheel with ground to lateral axis 
rear chassis.  And J is mass moment of Inertia. By 
replacing: 

    cos sin
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xi li i si i
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=                         (21) 

In which notation i includes r and f, representing 
front and rear axis of vehicle. further, lateral force 
applied on each wheel is in relation with side slip 
angles.  
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Cf is cornering stiffness of front wheel and Cr is 
cornering stiffness of rear wheel. Furthermore, αf is side 
slip angle for front wheel and αr is slide slip angle for 
rear wheel. Therefore, equations (18-20) convert to 
equations (20-25).  
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It can be seen that 3 state variables exist in equations 
(23-25). 

3. Optimal control of 4WS vehicle using LQR 

method 

Linear quadratic regulator is one of the optimal 
control methods which regulates system control input 
and its states, with regard to constraints on dynamic 
system, for obtaining optimal output. Equations (23-25) 
is rewritten in the form of state space according to 
equation (26).   

           ( , ) ( , )x A x u x B x u u= +                    (26) 

Which vector x is state variables vector and is 
defined according to equation (27). 
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And vector u is the control inputs for system which 
is defined according to equation (28).  
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State space equation obtained from non-linear 
dynamic equation for system are non-linear equations 
which should be optimized. Hence, state variables 
should be expressed according to Tylor series 
surrounding work space so that Jacobian matrices insert 
as multiplier matrices. In this way, state space equations 
can be linearized.  Equations (29) and (30) express 
linearized multiplier matrices surrounding work space. 
Each of its entries are obtained using Jacobian of 
dynamic equation. [19] 

( )

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

,

f f f

x x x

f x u f f f
A

x x x x

f f f

x x x

   
 
   
    

= =  
    

   
 
   

                        (29) 

( ) ( )1

2

1

sin sinf f f r r r

f
C l C l

x MV


   


= − − −  

 

( ) ( )

( ) ( )

( )

( )

2

1 1
{ sin sin

}

sin sin

cos

cos

f f r r

lf f lr r

r
r

f

r

f
f f

r

f
C C

x M

F F

l
C

V

l
C

V

   

   


   


   



−

 
+

= − − + −


+ − + −

+ −


−

 
+ − −

 

 


+

 

                  

( ) ( )1

3

1
sin sinf f f r r r

f
C l C l

x MV
   


= − − − −  

   

( ) ( )

( )

( )

( ) ( )

1

3

2

2

1
sin i{

co

s

s

s

cos }

co

n

cs o

lf f lr r

f
f f f

r
r r r

f f f r r r

f
F F

x MV

l
C

V

l
C

V

C l C l
MV

   


   


   


   


= − + −



 
+ − + − 

 

 
− − + − 

 

+ − − −  

+

 

             ( ) ( ) ( )

( ) ( )

( )

2

2

1
cos cos

s

{ cos

in

sin

o

}

c s

f f r r lf f

f
lr r f f f

r
r r r

f
C C F

x MV

l
F C

V

l
C

V

     


     


   


= − − + − + −



 
+ − − − + − 

 

 
+ − + 

+

−
 

              

( ) ( )
3

2

2 cos
1

cos 1f f rf r r

f
C l C l

x MV
   


= − − − − −  

             

( ) ( ) ( ) ( )2

3

1

f f f f f r r r r r

f
C l l cos C l l cos

x JV
n n


 


= +  

− +
            

( ) ( ) ( ) ( )3

2

1
f f f r r rf r

f
C cos C l con l n s

x J
 


= +  

− +
 

( ) ( ) ( ) ( ) 3

3

1
f f f f f r r r r r

f
C l l c nos Cn l l cos

x JV
 




+− +−=

( )

1 1 1 1

1 2 3 4

2 2 2 2

1 2 3 4

3 3 3 3

1 2 3 4

,

f f f f

u u u u

f x u f f f f
B

u u u u u

f f f f

u u u u

    
 
    
     

= =  
     

    
 
    

                    (30) 

( )
1

1

cos ff

u M

 −
=



 

  ( )
1

2

cos rf

u M

 −
=



( ) ( ) ( )
3

1 1
cossin f

f lf f f f f

f l
C F C

u M V


     +

   
= − + − + −  

   

 

  
( ) ( ) ( )1

4

sin
1

cosl
r

r r rr r r
V

f l
C F C

u M


     

   
= − − ++ − −  

  
+



 

( )
2

1

sin ff

u MV

 −
= −



 

( )
2

2

sin rf

u MV

 −
= −



 

     
( ) ( ) ( )2

3

co s ns
1

if
f

f lf f f f

f l
C F C

u MV V


     

   
= − − −+ + −  

   

 

     
( ) ( ) ( )2

4

1
ss ic no r

r r r r rlr

f l
C F C

u MV V


     

   
= + −− + −  

 
+

 

 



International Journal of Robotics, Vol. 9, No. 1, (2020), H. Tourajizadeh et al., 20-32 

 

25 

                      ( ) ( )3

1

sinf f flf n

u J

−
=



 

( ) ( )3

2

sinr r rlf

u

n

J


= −



+  

( )
( ) ( ) ( )3

3

sios nc
f f f

f lf f f ff

lf l
C F

u V
C

J

n 
   

   
= + −  

  
+



−
+



 

( )
( ) ( ) ( )3

4

cos sin
r r r

r rlr r r r

lf l
C F

V
C

u J

n 
   

   
= − − −

+
+ +  

  
+



 

     In this method, considering the equation (21), state 
space equations for closed loop control system are 
obtained as equation (32).  

                       u Kx= −                                    (31) 

             
( )Ax Bu A Bx K x= + = −

                     (32) 

Matrix K in equation (31) is the gain control matrix. 
The main objective of optimal control is to determine 
control signal of a system, which satisfy some of the 
physical constraints in a specific time, which by 
choosing a performance index reaches its desired 
minimum or maximum state. Optimal closed loop 
control is done using equations (31) and (32). With this 
difference, now K is optimal gain control obtained from 
minimizing cost function shown in equation (33). 

                ( )T TJ x Qx u Ru dt= +                           (33) 

Matrices Q and R represent weight matrices of states 
space and system inputs, respectively, which determine 
the amount of sensitivity and significance of each of 
them. Therefore, for obtaining matrix K, We  need to 
define weight matrices Q and R, depending on input 
significance and maximum error of output. There are 
many methods for determining these matrices.[20] The 
matrices can be chosen as R=1/max||u||and Q=1/max||x||. 
In which max ||x|| and max||u|| represent maximum error 
permitted tracking and maximum size of input control, 
respectively. In this article, considering system state, 
maximum size of input control for one of the inputs and 
maximum error permitted tracking for one of the state 
space are chosen max||x||=0.01 and max||u||=200 , 
respectively.at last, weight matrices entries are obtained 
according to equation (34).  

3

3

7

7

5 10 0 0 0
90 0 0

0 5 10 0 0
100 0 100 0 ,

0 0 10 0
0 0 1

0 0 0 10

Q R

−

−

 
   

   = =
   
    

 

                    (34) 

Using equation (33) and (34) optimal gain control 
matrices are obtained using equation (35).  

                       1 TK R B S−=                               (35) 

In which, matric S is obtained through solving 
Riccati Equation (36). [21] 

       1 0T TA S SA SBR B S Q−− − + − =                  (36) 

4. Simulation 

4.1. Kinematic simulation 

For checking on verification of the equations for 
four wheel steering vehicle in bicycle model with the 
specifications provided in table 1, kinematic simulation 
are implemented and this verification is confirmed 
through comparison of the results of forward and 
inverse kinematics. In forward kinematics, we specify 
desired trajectory for angular velocity of wheels as the 
input and work space data is as output. In inverse 
kinematics, work space data is as input and angular 
velocity of wheels as output. In this article, comparison 
of the mentioned methods are verification of kinematics. 
Then, we compare angular velocities. Input trajectory 
function are defined according to equation (37). 

                      2 1

1.8 4

f

r

t

t





= +

= +

                                      (37) 

 

Table 1.Characteristics Of Simulated 4WS Vehicle 

Name of the parameter Sym

bol 
value unit 

Linear velocity at the mass 

center of the vehicle 
V 25 m/s 

Vehicle body sideslip 

angle 
β 0.1047 rad 

Vehicle body yaw angle 

rate 
ψ 0.15 rad/s 

Front steering angle δf 0.4363 rad 

Rear steering angle δr 0.1747 rad 

Vehicle mass M 1600 kg 

Mass moment of Inertia J 2300 kg.m2 

Distance from CoG to front 

axle 
lf 1.2 m 

Distance from CoG to rear 

axle 
lr 1 m 

Front tire longitudinal 

casters 
nf 0.05 m 

Rear tire longitudinal 

casters 
nr 0.05 m 

Cornering stiffness of front 

tire 
Cf 29000 N/rad 

Cornering stiffness of rear 

tire 
Cr 60000 N/rad 

Wheels radius r 0.3 m 

 

Accordingly, a comparison of forward and inverse 

kinematic angular velocities is obtained as shown in 

Figure 3.  As it can been seen, there is an acceptable 

overlap between angular velocity of joint space for 

wheels in forward and inverse kinematics. Furthermore, 

there is a minimal error more pertinent to numerical 



International Journal of Robotics, Vol. 9, No. 1, (2020), H. Tourajizadeh et al., 20-32 

 

26 

solve of non-linear kinematic equation using the 

software (MATLAB). Therefore, it can be concluded 

that the obtained result is verified. Also, work space fits 

with this joint space according to figure 4. 

 

Figure 3.Comparison of the angular velocities of forward and 

inverse 

 

 

Figure 4. Workspace variables in kinematic simulation 

 

4.2. Kinetic simulation 

In order to validate the kinetic modeling, the same 
procedure which had been employed for kinematic 
section is performed. Kinetic specifications of 4WS has 
been provided earlier in table 1. Therefore, we consider 
a desired trajectory according to equation (38) to inverse 
dynamic and the required forces for wheels are obtained 
as feedforward signal. The same forces are injected to 
forward dynamic as input and the trajectory will be 
obtained. By comparing trajectory in forward and 
inverse dynamic, we check on verification of kinetic 
modeling.  

1.2 1

6 6 180

180 15

0.15
0.15

15

V t

t

t

 




= +

= −

= −
    (38) 

 

Figure 5. Comparison of the trajectory of state variables in 

forward and inverse dynamics 
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Figure 6. Force on wheels in kinetic simulation 

 

In fact, with considering three desired trajectories for 
three state variables by inverse dynamic, we can obtain 
values for control input and after that by using the same 
values as forward dynamic inputs, we can obtain values 
for state variables. Using charts according to time, we 
can make a comparison between primary desired 
trajectory and the final obtained chart. According to 
comparison of state variables in forward and inverse 
kinetics based on figure 5. Wheel forces fit with this 
work space is according figure 6.  

Similar to kinematics results, between trajectory of 
vehicle in forward and inverse dynamic, there is an 
acceptable overlap and there is a minimal error more 
pertinent to numerical solve of non-linear kinetic 
equation using the software (MATLAB). Also, we can 
understand the relation between non-linear coupling 
equation pertinent to state variable and the amount of 
error. As an example, in light of velocity results which 
have the maximum error, there is more non-linearity 
equation and as a result the obtained verification of 
kinetic model is more precise. 

 

4.3. Simulation related to comparison of two wheel 

steering and four wheel steering in LQR method 

For designing optimal controller, we obtained 
multipliers matrices which have been linearized 
surround work space. For two wheel steering and four 
wheel steering vehicle, values of multiplier matrices are 
defined in equations (39) and (40), respectively.  
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Using multiplier matrices and weight matrices, after 
solving Riccati equation mentioned in control theory 
section, we can obtain matrix S and then optimal gain 
control matrix for each of the models which are shown 
in equations (41) and (42) for 2WS and 4WS.  

,4

13.4816 83.5000 13.9347
8.1654 -0.7643 0.9208

15.8783 73.6030 -12.0010
-0.7643 0.1504 -0.1034

-0.0302 -0.0337 0.1127
0.9208 -0.1034 1.2449

0.0264 0.0765 -0.2306

Optimal WSS K

 
   
   =  =
   
    

 

             (41) 

 

,2

23.6801 85.8513 21.2814
3.9522 -0.4471 0.1826

22.6190 62.1309 2.9448
-0.4471 0.1646 -0.1285

-0.0305 0.0305 0.0960
0.1826 -0.1285 1.3080

0.0297 0.0027 -0.2168

Optimal WSS K

 
   
   =  =
   
    

               (42) 

 

Use of each of these optimal gain control matrices in 
equation (31), finally lead to a series of desired optimal 
control inputs for each method, these inputs are 
compared in figure 7.  

 

It can be seen that control inputs for 4WS are more 

optimized. It means that with less energy consumption 

in comparison to the more common 2WS model, it 

provides better response for state variable trajectory 

according to figure 8. It is obvious that by the aid of 

4WS steering system, we can obtain the desired 

position in a more quick and less oscillated manner. For 

example, in the velocity curve, 4WS approach to 

desired value 2.93 second quicker with the precision of 

one decimal fraction. It suggests 16.86 % improvement 

in a 15 second time period. While, required force for 

displacement is optimized. This is due to the increase in 

the number of control inputs in comparison to freedom 

degrees and constraint of system which allows for the 

selection of more optimal options for path planning. 

Also calculation of cost function in equation (33) for 

two models showed that 4WS has a cost equal to 157.4 

and 2WS has a cost equal to 237.2. This suggests that 

4WS is more optimal quantitatively. 
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Figure 7. Comparison of the optimal control inputs in both 

4WS and 2WS models 

 

 

 

 

Figure 8. Comparison of the path of state variables in both 

4WS and 2WS models 

 

4.4. Simulation for comparison of optimal LQR 

method and non-optimal method using manual 

gain matrix for 4WS model 

In the previous section, we addressed simulation of 
optimal LQR method using gain control matrix. In the 
present section, simulation of optimal LQR method 
compared to non-optimal method using gain multiplier 
matrices which have been regulated manually. In 
equation (43), values of gain multiplier matrices which 
have been used in simulation software, are presented. 

15 40 -100

20 30 -100

-0.03 -0.00006 0.0008

0.06 -0.00005 0.0007

ManualK

 
 
 =
 
 
 

                 (43) 

Comparison of desired optimal control inputs using 
LQR method and non-optimal method using gain 
multiplier matrices are shown in figure 9. 

 

 

 



International Journal of Robotics, Vol. 9, No. 1, (2020), H. Tourajizadeh et al., 20-32 

 

29 

 

Figure 9. Comparison of the control inputs in both optimal 

and non-optimal methods 

 

It can be seen that the oscillations of inputs and its 
increase in the non-linear method comparing to the 
optimal method is significant. State variables trajectory 
according to the obtained inputs in the two methods are 
shown in figure 10. It can be seen that we can obtain a 
desired position in quicker and less oscillated manner 
using LQR method in such a way that there is a 
significant improvement percent for optimal state 
variables trajectory. For example, for vehicle body yaw 
rate, the regulation process is accomplished 6.67 
seconds sooner using the proposed method of this paper. 
In simulated time history, there is an improvement equal 
to 44.47% for the yaw rate regulation of the vehicle 
movement. In the same manner, improvement in 
optimal performance in comparison to non-optimal 
control for side-slip angle and velocity are 23.47% and 
13.47%, respectively. While the required force for this 
displacement has been more optimized. This is due to 
optimization of this method and obtaining optimal 
trajectory for vehicle motion between the two positions. 

It is worth mentioning that calculation of the cost 
function for non-optimal state represent higher cost in 
comparison to optimal state and its value is 710.04%, 
which in comparison to optimal state (157.37%) is 
higher. For better comparison of calculated value for 
cost function in different methods mention in this 
article, table 2 shows all pertinent results. 

 

Table 2. Resultant Value For The Cost Function For 

Mentioned Control Algorithms 

Cost function value Modeling 
Control 

method 

157.3716 4WS 
Optimal 

237.1844 2WS 

710.0398 
Manual gain 

matrix 

Non-

Optimal 

 

As expected, not only optimization resulted in 
significant reduction of cost function, but also addition 
of steering control input led to an increase in this 
improvement, which is mentioned in each section.    

 

 

 

Figure 10. Comparison of the path of state variables in 
both optimal and non-optimal methods 
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As mentioned LQR is a closed loop regulator and 
thus it is robust to some extent against the external 
disturbances and parametric uncertainties. In order to 
check the mentioned robustness a regulation is 
performed in presence the disturbance and uncertainty. 
Consider that the vehicle is supposed to travel between 
the following boundaries: 

( )
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
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 =
=

 
= = 

 =  =


                                      (44) 

The mass of the vehicle is considered about M=1650 
kg for designing the controller which is 50 kg less than 
the actual mass of the modeled vehicle in the plant. Also 
the following disturbance is implemented on the vehicle 
dynamics from the road: 

( 0.5 ) ( 0.5 )

( ) ( )

3 4

[ 1000 ( ) 1000 ( )

( ) ( ) ]

; ;

;

t t

dis

t t

u sin t e sin t e

F sin t e F sin t e

− −

− −

= −

= − =

             (45) 

Considering the same controlling gains of equation 
(43), the actual path of the vehicle in comparison to its 
desired setpoint can be seen as follow: 

 

 

 

Figure 11. Comparison of the path of state variables in 
simple situation and in presence of uncertainties 

 

It can be seen that the overall generated path is similar 
to a simple regulation and despite the negligible 
oscillations occurred during the implementation of the 
disturbance, the controller has successfully guided the 
vehicle to its destination point. The error of the states 
respect to the setpoint can be seen in the figure 12: 

 

 

 

Figure 12. Comparison of the error of state variables in 
simple situation and in presence of uncertainties 

 

As can be seen at the initial stage of movement, 
some oscillatory behaviour can be observed since the 
disturbance domain is maximum during these moments. 
However the vibration is damped afterwards as a result 
of feedback based nature of the designed optimal 
controller and the error converges to zero. This is 
contributed to the fact that LQR is a Lyapunov based 
stable controlling strategy. Required controlling effort 
of the system is also shown as figure 13. Again here the 
overall trend of required generalized force of the system 
is the same as LQR regulation. It can be seen that as 
expected during the moments in which the effect of 
disturbance is supposed to be compensated, the required 
force changes according to the error feedback around its 
mean value in order to neutralize the effect of 
disturbance and uncertainty. This shows that the 
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proposed optimal controller not only optimizes the 
desired objective function, but also is robust against the 
disturbances and uncertainties as a result of its closed 
loop nature. 

 

 

Figure 13. Comparison of the controlling effort between 
the simple situation and in presence of uncertainties 

5. Conclusions 

In this paper the complete modeling of a 4 wheel 
steering vehicle including its dynamics and kinematics 
based on Jacobian matrix was extracted and using an 
optimal controller of LQR its optimization process was 
performed through which the optimal controlling signal 
and its corresponding optimal path was extracted. It was 
seen that using the proposed Jacobian based kinematics 
of the system, dynamics and control of the vehicle can 
be performed more efficiently. Dynamics of the system 
was also extracted using Newton-Euler method while 
the dynamics and sliding of the tire were also 
considered. Simple and fast closed loop optimization 
method of LQR was employed to control the vehicle in 
an optimal and online way between two definite 
boundaries. Verification of the proposed modelling and 
controlling was done by conducting some analytic and 
comparative simulation scenarios in MATLAB. It was 
seen that between 13%-45% improvement in state 
accuracy was realized for regulation process of the 
vehicle while LQR is implemented as its controlling 
method while the required controlling effort is roughly 
the same. Also it was proved in this research that by 
increasing the number of steerable wheels and using the 
proposed Jacobian based kinematics the possibility of 
efficient optimization increases since the number of 
controlling inputs increases and the number of the states 
is the same. The comparison between these two models 
shows that the 4wheel steerable system can be 
optimized with about 16%-23% improvement in the 
regulation accuracy of the states. It was also shown that 
the proposed model using the proposed optimal 
controller can successfully decreases the cost value of 
the objective function from by about 50.7% rather than 

the 2 wheel steering system. This improvement is about 
351.2% in comparison between the optimal control and 
simple control of 4 wheel steering system which shows 
that the proposed model with the proposed optimal 
controller results in the best performance. Finally it was 
proved that the proposed optimal controller is robust 
against the external disturbances and parametric 
uncertainties since the nature of regulator is closed loop. 
The controller compensated the implemented 
disturbances by the aid of its feedback signals and 
improving its controlling effort which resulted in 
stability and zero error at the final regulation process.  
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