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Here, we are going to design a stabilized controller for the Stewart platform. A new 

model of the Stewart platform will be presented which has many applications in the 

industry. The dynamics of the Stewart platform are presented in two separate systems. 

One system for the linear motion of the Stewart platform and another system for its 

angular moment. In addition, we use a quaternion-based method to analyze the 

dynamics of the Stewart platform. The 6-DOF Stewart-Platform dynamics is 

nonlinear, then at first by using the feedback linearization method we convert the 

nonlinear dynamics in new space as a linear state-space. Then we design an  -

stabilized controller for this platform in linear space. A linear controller for linear 

motion systems will be designed but for the second system, it must first be 

linearization and then design controller for it. After design of stabilized-LQR 

controller for linearized space system, we convert our design to original nonlinear 

space and exert on system for simulations. The simulations results show that we will 

succeed to design a controller for the Stewart platform. 
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1. Introduction  

Stewart platform is a parallel robot that employs a 

closed-loop kinematic chain (CKC). The platform was at 

the first made in 1965 to simulator aircraft [1]. In 

particular, when compared to open–loop kinematic chain 

mechanisms, CKC manipulators have a higher structural 

rigidity, noncumulative actuator errors, and a 

proportionally distributed payload to the links, granting a 

higher strength-to-weight ratio [2]. Therefore, there is 

significant interest in parallel manipulators in general and 

in the 6-DOF Stewart platform in particular [3], [4], [5], 

whose modern applications range from industrial-grade 

manipulators [6] to offshore cargo transfer mechanisms 

[7]. The new model of the Stewart platform that is 

presented in this article has 6 rotary servos. This six-servo 

motor will connect the base to the top of the Stewart 

platform with 6 fixed length bars. The joints between the 

bar and top platform and servo arms and bars should be 

universal, so as to move in six spatial positions fulfilled. 

With this scheme, we will able to provide more 

applications in various industries of this robot. For 

example, the surgical robot in the medical industry and 

packaging robots named and etc. Recently, Iranian 

engineers in Tarbiat Modares University recently build 

and tested successfully a mobile based Stewart platform 

[8]. Meanwhile in another Iranian journal we reported the 

sensivity analysis of this platform with respect to 

parameter variations [9]. An optimal control methods for 

control of this robot is reported in [10] and also an 

optimization-based fuzzy controller are developed in [11]. 

This paper is organized as follows: in the first section 

(section3), at first write the rigid-body dynamics of 

parallel Stewart manipulator and then re-formulize this 

dynamics using quaternion method. In section4, we using 

the famous linearization method from nonlinear control 

systems, i.e. feedback-linearization to convert nonlinear 

dynamic quaternion model to a linear state-space model. 

The benefith of linear state-space model is that the design 

of control in this space is simpler and are developed many 

years ago by control engineers. In last part of this section 

we design a stabilized linear quadratic regularor for 

linearized system and after design in this space, we return 

the designed state-feedback controller and the parallel 

robot manipulator to original nonlinear-space for 

simulation in last part of the section. Finally conclusion 

results and we give some proposals for future works. 

2. Nomenclature 

Here we introduce the symbols that are used in this 

paper. They are reported in the following table. 

 

 

 

 

Table 1 Nomenclature of this paper 

Symbol Definition Symbol Definition 

  Angular velocity v  Linear velocity 

mI  
Inertia tensor R  Rotation matrix 

q  Orientation J  Jacobian matrix 

p  Position vector x  State vector 

  Quaternion u  Control vector 

  Torque vector y  Output vector 

F  Force vector K  Feedback gain 

 

3. Quaternion-based Description of the 

Stewart Platform  

Stewart platform is a 6-DOF parallel manipulator that 

consists static base and a movable platform which are 

linked by six variable-length actuators, as depicted in 

Figure 1. 

 

Figure 1. Stewart platform 

3.1. Rigid Body Dynamics 

In [12] the dynamic model in the joint space of Stewart 

platform is expressed by: 
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As you see solving this dynamic equation is very difficult 

and we are going to represent a new method for solving 

this equation. So let's take a look at Newton-Euler equation 

of the paper model. The platform is a non-linear coupled 

system usually modeled using Newton-Euler formalism. 

By using the classic description of a 3D rigid body with 

respect to a coordinate frame whose origin coincides with 

the center of mass of the body, according to [13], the 

Newton-Euler equations that represent the upper platform 

are given by: 

(2) 
vmF

ISI mm



  )(
 

Here 
3 is the torque vector, 

33mI is the 

inertia tensor, and 
3 is the angular velocity vector, 

all represented in the local body frame of the upper 

platform. Also, 
3F  is the force vector and 

3v is 

the linear velocity vector, where these last two are 

represented in the global inertial frame, and m is the body 

mass of the end effector, whose center of mass is 

described   point in Error! Reference source not found.. 

The term ( ) mS I   represents the gyroscopic effect on the 

platform
2
. In order to relate the dynamics of the velocities, 

position and orientation of the upper platform, the 

following mapping will be used, 

(3) 
1

2 ( )

T

q
aI S






 
  

 
 

Here,  4 ,Tq a b c d       is the body 

orientation unit quaternion [13] and 

3
T

x y zp p p p     is the position vector of the 

end effector regarding the global inertial frame, with xp , 

yp  and zp  related to the x-, y and z-axis respectively. 

Adding the gravity force on the system, the complete 

dynamics of the upper platform can then be expressed by: 

 
2
 In (1) and in further equations, the skew-symmetric matrix 

3 2

3

3 1

2 1

0

( ) 0 ,

0

x x

S x x x x

x x

 
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 is used to represent the vector cross 

product. 
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where 
3u  is the input torque referenced to the local 

body frame,
3Fu is the input force referenced on 

the global inertial frame and g is the gravity vector.  

3.2. Quaternion-based Jacobian 

As a standard definition, the Jacobian matrix J transforms 

the linear velocities of the six actuators 
6l to the 

linear and angular velocities of the platform, 
3jp and 

3j , respectively, with J=(T,B). That is, 

(5)  BBTT PPJl    

with angular velocities 
T  and 

B  referenced in each 

local body frame. Going further, from Figure 2, the 

vectors iT  and iB  are defined from the center of the top 

and bottom platforms, to the 
thi  top and bottom links, 

relative to the top and bottom platforms, respectively, and 

TP ,
BP  are the position vectors of the platforms. 

 

Figure 2 Main vectors of the platform 

 

Consider the Stewart platform and vectors shown on 

Figure 2. There exists a Jacobian matrix 
126J  

given by 
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if the relation (5) holds true, where 

(7) 
i

i

i
L

L
n   

is an unit vector with the same direction of the 
thi leg 

, ( 1,...,6)iL i  such as 

(8) ( )I T I B

i T B iL R p R B p     

and 
I

TR  and 
I

BR  are the rotation matrices regarding the 

global inertial frame of the platforms, given by 

(9) 
2( , ) 2 ( ) 2 ( )j j j j j jR a I a S S      

where ja  and 
j  are the real and imaginary values of 

, ,jq j T B . If the global inertial frame coincides with 

the local reference frame of the bottom platform of the 

manipulator, (8) is simplified to 

(10) 
I T

i TL R p   

and the Jacobian matrix (6) is given by 

(11) 
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Another important result used in this work is that use of 

the Jacobian matrix to relate the forces and torques of the 

platform to the forces of the six actuators that power the 

manipulator. 

If J is a Jacobian matrix, its transpose TJ may also be used 

to relate the linear forces of the six actuators 

 1 6lf fl fl  to the forces and torques applied on 

the top (
TF and 

T ) and bottom platforms (
BF and 

B ), 

that is 

(12) 

T
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l

B

B

F
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4. Control Strategies 

According to the (4) we can extract two systems for 

Stewart platform. Once for linear motion of platform ( 1S ) 

and another for angular motion of Stewart platform ( 2S ). 

So we have 

(13) 

1

1

1

0 0

0 0

p I p
u

v v m I
S

p
x

v



       
        

       
 

 
  
 

 

Where F Fu u g   and: 
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Therefore, our aim in this section is design two separate 

controllers for each of these systems. First design an LQR 

controller for the linear system ( 1S ) and then controller 

design for the angular system ( 2S ) will be discussed 

later. Because this system is a nonlinear system, first of all 

linearization operations will be done for the system and 

then controller design is done. 

4.1.  -Stabilized Controller 

We consider a continuous-time linear system described by 

(15) 
x Ax Bu

y Cx

 


 

In which y is the output of the system and C is the output 

matrix. Since we are designing a state-feedback system 

while keeping in mind that all state variables are available 

for measurement, y can consist of all six state variables 

and C can thus be an identity matrix. The performance 

index J that must be minimized to achieve  -stabilized 

controller for the above linear system is as follows [14-15]: 

(16)  2

0
cos 2at T T Tt e x Qx u Ru x Nu dt


    

In which x is a vector of state variables, u is a vector of 

system inputs, and Q,R,N are weighting matrices chosen 

by the designer [12]. The matrices Q and R signify the 

trade-off between performance and control effort 

respectively. It should be noted that the control law that 

minimizes J is given by linear state-feedback u = −Kx.  

Using MATLAB and the numerical values in Section 

Error! Reference source not found., we find that, 
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(17) 
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With a simple LQR, i.e, 0  ,  all poles of state matrix A 

lie on an imaginary axis which makes the system becomes 

unstable. For solving this problem, we use the (Alpha) 

matrix to transfer poles from the imaginary axis. If we do 

so, a new controller matrix (K) can be achieved, 

(18)  3 3 3 3857.3832 254.7939K I I   

With 2   and using control law u = −Kx, system will be 

stable as Figure 3. 

 

Figure 3 linear system with LQR controller and without 

controller 

4.2. Angular system of Stewart platform 

For the attitude control of the Stewart platform, the 

rotational movement can be extracted and simplified in 

order to design a feedback linearization controller. 

Feedback linearization transforms a non-linear system into 

a linear one, then by input-output feedback linearization 

the system is linearized and a state feedback control law is 

obtained by pole placement.  

Now consider the angular position q and velocities   of 

the platform represented by the system 
2S , It will rewrite 

(20) 
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Where the quaternion vector is  

   1 2 3 4a b c d q q q q  and f(x) is nonlinear 
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where the state variables are 

1 2 3 4 y y zq q q q       and  
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And m x y zI I I I     is the top platform tensor of 

inertia. Input matrix in (18) is equal to 
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Where 1 2 3

cos(120) 1
, ,T T

x y z

r r
b b a

I I I
    . Also output 

matrix of (20) is equal to 
   1 2 3 2 3 4( ) ( ) ( )y h x h x h x q q q  .  

4.3. FEEDBACK LINEARIZATION 

TECHNIQUE 

This section deals with the design of a quaternion-based 

feedback control scheme for the purpose of transforming 

the nonlinear system (20) into a linear and controllable 

system. Each of the output components is differentiated a 

sufficient number of times until a control input component 

appears in the resulting equation. Using the Lie derivative, 

input-output linearization can transform the nonlinear 

system into a linear system. Then we can apply a linear 

control law for the linearized system. 

4.4. INPUT-OUTPUT FEEDBACK 

LINEARIZATION TECHNIQUE  

Furthermore, there are two feedback linearization methods 

that are [17-18]:  

(a)- Input-state feedback linearization 

(b)- Input-output feedback linearization  

The input-output feedback linearization technique is 

summarized by three rules; 

• Deriving output until input appears 

• Choosing a new control variable which provides to 

reduce    the tracking error and eliminate the nonlinearity 
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• Studying stability of the internal dynamics which are part 

of system dynamics cannot be observed in input-output 

linearization. 

The vector relative degree of the system (20) is,

1 2 3 2 2 2
T

r r r        while the dimension of the 

system is 7. Since
1 2 3

6 7r r r    , the nonlinear system 

can be input-output linearized only. Thus, we have [15]: 
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Where D(x) and H(x) are computed as [13-14]: 
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Where the Lie derivatives are defined as [17-18]: 

(25) 
1

7

1

17
11

1

17
1

1

( ) ( )

( ) ( ( )) ( )

( ) ( ) , 1,2,3

i

i

i

i

i

i

f i

j i

r

rr i i

f i f f i

j i

r

r i i

g f i i

j i

h
L h x f x

x

L h
L h x L L h x f x

x

L h
L L h x g x i

x





















 




 









 

 

The feedback linearization is feasible if and only if the 

matrix H(x) is nonsingular, which means that ( ) 0H x  . 

We can obtain the matrix H(x) by calculating Eq. (24) 
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And we will obtain:  

2 2 2 2

1 2 3 1 2 3 4 1 1 2 3 1

1 1
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8 8
H x b b b q q q q q b b b q      

when, 01 q  the matrix H(x) is nonsingular and the 

input-output linearization problem is solvable for the 

nonlinear system of equation (18). By using the Feedback-

Decoupling [15] of this multivariable system and Letting v 

= D(x) + H(x) u, we can compute the control law of the 

form [15, 19]: 

(27) 
1( )( ( ))u H x v D x   

 

4.5. Linear Control for Feedback Linearized System 

Using the feedback linearization technique, the system 

(10) can be transformed into a system that, in suitable 

coordinates, is input-output linearized and controllable. 

The change of coordinates ξ = Φ(x) is given by 

(28) 

416433

315322

214211
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In the new coordinates, the system appears as: 

(29) 




Cy

BvA
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
 

In which,  654321   , and 

(30)  3 3 3 3 3 3
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I
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   
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For the linear system (29), one can design a controller 

using a linear control law, which assigns the poles of the 

closed loop linear system to desired positions. The LQR 

controller law is used in this study. Once again we review 

the steps in section A to design controller law for linear 

system (29).   

Using MATLAB and the numerical values in Section 

Error! Reference source not found., we find that, 

  

(31)  3 3 3 3400.4 40K I I   

In this controller law, we use the (Alpha) matrix to 

transfer poles from the imaginary axis. If we apply this 

controller law to the nonlinear system (20) behavior of the 

system states will be as follows: 
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Figure 4 nonlinear system with controller K 

  As you can see the system was not stable ideally. We 

change the weighting coefficients matrix K for system 

stability. If we change the weighting coefficients matrix K 

of the nonlinear system (20) will be stable as  

 

Figure 5 nonlinear system with new controller K and 10    

In this step, the controller matrix K will be as follows: 

(32)  3 3 3 35047.4 278.5605K I I   

Where the new weighting coefficients matrix in 

performance index J, will be as follows: 

(33) 
3 3 3 3

3 3

3 3 3 3

312500I
, 5I

312500I
Q R

 



 

 
  
 

0

0
 

5. Conclusions and future works 

In this section, we analyze the results of the Stewart 

platform nonlinear system. As we saw in the previous 

section, the Stewart platform was stable. Now consider the 

state matrix A in (29), we're going to move the poles of 

this matrix and check the result on the stability of the 

Stewart platform. First, define the parameter of the Stewart 

platform in Table 2. 

 

 

Table 2 Stewart platform parameter 

Parameter symbol Initial value 

Mass of platform 

(Kg) 
M 1.26 

Inrtial tansor 

2( )Kgm  
mI   410 1.705 1.705 3.408

T
diag 

 

Gravity )/( 2sm  g 9.85 

Sampling period (s) T 0.01 

Top platform radius 

(mm) Tr  115 

Initial position,Top 

platform 0P  [0,0,150] 

Initial orientation, 
Top platform 0q  [0.698,0.3,0.42,0.342] 

 

Using the matrix alpha to change the pole position of state 

matrix A and then check the stability of the platform. So, 

we change alpha from 1 to 100 and see the effect on the 

change of maximum weighting coefficient in the K matrix.  

 

Figure 6 maximum weighting coefficient of K with respect to   

With this change to the state matrix of platform, we’ll 

review how to change the controller parameters and the 

Stewart platform. Figure 7 and Figure 8 show the change 

of maximum and minimum overshoot when we apply the 

LQR controller on the Stewart platform. 

 

Figure 7 maximum overshoot of platform state with first K 
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Figure 8 minimum overshoot of platform state with first K 

It is obvious that by increasing the amount of alpha, the 

overshoots also increase. If we apply this change on the 

corrected coefficient matrix LQR controller (K), this 

change will be as Figure 9 and Figure 10. 

 

Figure 9 maximum overshoot of platform state with corrected 

coefficient K 

 

Figure 10 minimum overshoot of platform state with corrected 

coefficient K 

It can be seen that by increasing the alpha value of 70, the 

lowest overshoot achieved. Figure 11 show the nonlinear 

system with effects of alpha=70 on the LQR controller 

matrix (K). 

 

Figure 11 nonlinear system with corrected coefficient 

K controller and alpha=70  

 

For future work, someone can use model predictive 

control (MPC) for feedback-linearized Stewart platform 

or using neural-network model predictive control 

(NNMPC) which it may to better results to LQR for 

feedback-linearized quaternion model. 

References 

[1] D.stewart, A Platform with Six Degrees of Freedom," 

Proc.Inst. Mech. Engr., (1965), 371–386 

[2] K. Liu, G. Lebret, and F. L. Lewis, "Dynamic analysis 

and control of a stewart platform manipulator," Journal of 

Robotic systems, vol. 10, no. 5, (1993), 629-655. 

[3] M. Ayas, E. Sahin, and I. Altas, , "Trajectory tracking 

control of a stewart platform," Power Electronics and 

Motion Control Conference and Exposition (PEMC), vol. 

16, (2014), 720–724. 

[4] P. Kumar, A. Chalanga, and B. Bandyopadhyay, 

"Position control of stewart platform using continuous 

higher order sliding mode control," Asian Control 

Conference (ASCC), vol. 10, (2015),1-6. 

[5] S. Maged, A. Abouelsoud, and A. Fath El Bab, "A 

comparative study of unscented and extended kalman 

filter for position and velocity estimation of stewart 

platform manipulator," Cyber Technology in Automation, 

Control, and Intelligent Systems (CYBER), 2015 IEEE 

International Conference, (2015), 1216-1222. 

5 10 15 20 25 30 35 40 45 50
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9



Maximum Overshoot

 

 

q
0

q
1

q
2

q
3

W
x

W
y

W
z



International Journal of Robotics, Vol.8, No.1, (2022) J. Sharifi et al. 

79 

[6] K. H. Hunt, Kinematic geometry of mechanisms, 

Oxford University Press, (1978). 

[7] H. Gonzalez, M. S. Dutra, and O. Lengerke, "Direct 

and inverse kinematics of stewart platform applied to 

offshore cargo transfer simulation," 13th World Congress 

in Mechanism and Machine Science, (2011). 

[8] Maleki Roudposhti M , Agheli Hajiabadi M , Design, 

Fabrication, and Kinematic Analysis of a 6 DOF Mobile 

Wheeled Parallel Robot, Modares Mechanical 

Engineering, Vol. 20, No. 7, (2020), 1749-1759. 

[9] J. Sharifi and M. Doustani, Sensitivity Analysis of a 

New Model of Stewart Platform, Mathematics and 

Computational Sciences, Vol. 3, No. 3, (2022), 47-56. 

[10] Tamir, Tariku Sinshaw, et al. "Design and 

optimization of a control framework for robot assisted 

additive manufacturing based on the stewart 

platform," International Journal of Control, Automation 

and Systems, Vol. 20, No. 3, (2022), 968-982 

[11] Vu, Mai The, et al. "Optimized Fuzzy Enhanced 

Robust Control Design for a Stewart Parallel 

Robot." Mathematics, Vol. 10, No. 11, (2022). 

[12] Du, Shang Jian, “Simulation and tool path 

optimization for the hexapod milling machine”, Vol. 26. 

Vulkan-Verlag GmbH, (2005).  

[13] Paulo F. S. R. de Faria, Rafael S. Castro, Aur´elio T. 

Salton and Jeferson V. Flores, "Quaternion-based 

Dynamic Control of a 6-DOF Stewart," in 2016 IEEE 

Conference on Control Applications (CCA), Buenos 

Aires, Argentina, 2016. 

[14] Ali Khaki-Sedigh, “Modern Control Principles ”, 12
th

 

edition, , University of Tehran Publisher, 2014. 

[15] P. Albertos and A. Sala, “Multivariable Control 

Systems: An Engineering Approach”, Springer-Verlag. 

2004. 

[16] G. F. Franklin, J. D. Powell, A. Emami-Naeini , 

Feedback Control of Dynamic Systems, 5th ed. , Upper 

Saddle River: Pearson Prentice Hall, 2006. 

[17] H. Nijmeijer and A. van der Schaft. Nonlinear 

Dynamical Control Systems, Springer-Verlag, 1990. 

[18] Isidori, Alberto, Nonlinear control systems: an 

introduction. Berlin, Heidelberg: Springer Berlin 

Heidelberg, 1985. 

[19] Ali Khaki-Sedigh, “Analysis and Design of 

Multivariable Control Systems”, K. N. Toosi University 

of Technology, 2020. 

 

 

 

 

 

Biography 

Javad Sharifi received B.S 

degree in Electrical Engineering 

from Ferdowsi University of 

Mashhad at 2003, M.Sc degree 

in Electrical (Control) 

Engineering from University of 

Tehran in 2006, and Ph.D. 

degree in Electrical (Control) Engineering from 

Tarbiat Modares University in 2011. Since 2011, 

he is assistant professor of Electrical and 

Computer Engineering, Qom University of 

Technology. His research interest is modelling and 

control of physical and mechatronic systems. 

 

Mohammad Doustani was 

born in Ahvaz, Iran, in 1990. 

He received the B.E. degree in 

Electrical Engineering from the 

Islamic Azad University of 

Dezfol, Iran, in 2012, and the 

M.Sc. degree in Control 

Engineering from the Industrial 

Qom University, Qom, Iran, in 2017 respectively. 

His current research interests include Robotics, 

Robustness control, LQR control and Neural 

networks. 

 


