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 This paper presents the ability of hybrid zero dynamics (HZD) feedback 

control method to reproduce human like movements for walking push 

recovery of an under-actuated 3D biped model. The balance recovery 

controller is implemented on a three-dimensional under-actuated bipedal 

model subjected to a push disturbance. The biped robot model is 

considered as a hybrid system with eight degrees of freedom (DOF) in 

the single support phase and two degrees of under-actuation in the ankle 

joint. The control is done based on the method of virtual constraints and 

HZD, by adjusting the desired trajectory of the event-based feedback 

controller. Several simulations have been done considering pushes 

exerted during walking. The results showed the performance of the 

method in recovery of pushes occurring in the sagittal and frontal planes 

and also in the both directions, simultaneously. The results showed that 

the simulated motions can be characterized in terms of strategies 

observed in human for balance recovery against perturbations during 

walking. 
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1. Introduction 
 

      Inverse biomimetic has attracted increasing 

research attention as an interesting approach. This 

approach starts from the available engineering 

techniques and computational facilities to explain 

generation of human or animal behavior [1-2]. This 

paper presents an attempt to use the inverse biomimetic 

approach using a 3D bipedal model to explain human 

reactions under pushing disturbances during walking. 

The results of current paper and relevant studies by 

other researchers from biology and robotics (e.g. 

references [3-6]) may provide opportunities for joint 

research projects involving neurobiologists and 

roboticists. 
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Biped robots are designed and fabricated to work 

in environments designed for human. During walking, 

many perturbations (e. g. stumbling, slipping and 

pushing) may occur and bipeds should adopt proper 

responses to avoid falling. Push recovery refers to 

maintaining biped balance when subjected to a push 

disturbance. Consideration of spatial and under-

actuated models makes it very challenging to study 

motion planning and control of biped robots when 

pushed. The objective of the present paper is to address 

this problem. Control of under-actuated walking is an 

attractive area of research because the motions 

achievable by these kinds of bipeds are highly efficient 

and natural looking in comparison with fully actuated 

bipeds. 

Previous studies on the modeling and control of 

push can be classified into two categories: Push 

recovery during standing and push recovery during 

walking. Upright standing push recovery [7-10] is 

beyond the scope of this paper and it is totally different 

from walking push recovery. So, we will briefly review 

the studies have been done in robotics on the push 

recovery of walking.   

Very few researchers have explored push recovery 

during walking and there is still a lack of tools for 

systematic control design and stability analysis, 

especially for non-periodic motions. Some researchers 

have focused on the control of fully actuated ZMP 

based walkers [11-12]. In this approach, a desired 

trajectory of the ZMP is first defined and a joint or 

force controller is then applied on the basis of the 

desired ZMP trajectory. Adiwahono, et al. [13] have 

proposed some definitions of the types of pushes that 

may occur during walking, and presented a push 

recovery algorithm based on the modification of the 

ZMP reference of the preview controller. Adiwahono, 

et al. [14-15] also proposed an overall real-time control 

system and a real-time push recovery controller for 

humanoid robots with a focus on how to modify the 

different phases in walking such that the stability can 

be maintained. Their proposed real-time push recovery 

controller uses body linear velocity, body inclination, 

and ground reaction force as a feedback to modify the 

gait. Urata et al. [16] have introduced an online 

decision method of foot placement using a fast 

trajectory generation method that manages pushes. 

Wang et al. [17] have studied the push recovery for a 

3D biped robot with flat-feet based on the control of the 

ZMP, the swing ankle rotation and the partial joints 

angles simultaneously. However, there are still a few 

researches on the push recovery of under-actuated 

walkers (limit cycle walkers), whereas the motions 

achievable by them are energy efficient and natural. 

See ref. [18] and references therein for a review of push 

recovery studies of limit cycle walkers. 

Most of the above mentioned studies have been 

done in the plane. One important reason is that in 3D 

case, dynamics of the robot becomes more complex 

with several highly coupled degrees of freedom. 

Furthermore, the degree of under-actuation for 3D 

bipeds with point-feet contact is two or more than two 

(in the single support phase); therefore it would be hard 

to control them under external disturbances. Under-

actuated walkers with point-feet contacts have 

generated much interest for researchers because they 

show highly efficient and natural motions [18]. To the 

best of current author’s knowledge, although there is no 

work on the push recovery of under-actuated spatial 

bipeds with point-feet contact in the open literature but 

there are some valuable studies on the feedback control 

of these robots during normal walking and running.  

One of the important works has done by Chevallereau 

et al. [19] in which a time-invariant feedback control 

law has been developed for a 3D bipedal model that 

induces asymptotically stable walking. They used the 

method of virtual constraints and hybrid zero dynamics 

(HZD) in order to produce an autonomous feedback 

controller that realizes the stable periodical orbit for the 

model. They also extended the work to study steering 

of the model using an event-based feedback controller 

in order to achieve a desired amount of turning [20]. 

Song and Zefran [21] have designed a controller for a 

five-link 3D robot with un-actuated point-feet on the 

basis of linearizing the robot’s dynamic model along a 

periodic orbit.   

In the present study, a 3D hybrid nonlinear under-

actuated biped model with eight degrees of freedom 

and six actuators is considered which experiences a 

pushing force during walking. An event-based hybrid 

feedback controller has been implemented to recover 

orbital stability of the robot after push. This is 

accomplished by adjusting the desired trajectory of 

controller. The range of perturbation forces which the 

method can reject in each direction to continue cyclic 

walking has been obtained. The contribution of this 

work is that the simulated movements have been 

characterized based on human observed strategies for 

balance recovery. The overall stability of walking, that 

is the convergence to a periodic walking after push, 

was shown through simulation.  

In the following section, the model of the biped is 

described and its dynamic equations are derived. The 

control strategy is detailed next and then the simulation 

results are discussed. Finally, concluding remarks are 

drawn. 
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2. Dynamical model of the bipedal robot 

The studied three-dimensional bipedal model consists 

of five rigid segments representing; a torso, two thighs 

and two shanks (Figure 1). These segments are 

connected by two hip joints (2 DOF for each hip joint) 

and two knee joints (1 DOF for each knee joint). The 

stance leg is assumed to act as a passive pivot in the 

sagittal and frontal planes, with no yaw rotation (about 

the x-axis). So, the leg end is modeled as a point 

contact with 2 DOF. There is no torque at the contact 

point of the legs with the ground. All actuated joints are 

assumed as frictionless hinges that are independently 

actuated. In all the simulations it is assumed that the 

friction between the point-feet and the ground is 

sufficient to prevent sliding and yaw rotation. In total, 

the biped model in the single support phase has 8 DOF 

and there are two degrees of under-actuation at stance 

leg contact. 

It is assumed that the walking surface is rigid and 

flat and the transition from one leg to another leg 

(double support) takes place in an infinitesimal length 

of time. This assumption entails the use of a rigid 

model to describe the impact of the swing leg with the 

ground. The dynamic model of the biped robot thus 

consists of two parts: 

• Dynamics of the robot during the swing phase 

(single support phase), 

• Dynamics of contact events (foot with 

ground).  

 

 
Fig. 1. Model of 3D point-feet biped robot 

2.1 Dynamics of the robot in single support phase 

During the single support phase of the motion, the 

stance leg is acting as a 2 DOF pivot, and there are only 

8 DOF ([𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7, 𝑞8]). In this phase, the 

biped is equivalent to an open chained manipulator 

robot. There are two conventional approaches to obtain 

the equations of the motion of an open chained 

manipulator consisting of rigid bodies; Newton-Euler 

(NE) and Euler-Lagrange (EL). For the models with 

high degrees of freedom the EL method requires 

complex calculations for partial derivations and the NE 

formalism is more efficient due to its recursive nature 

[22]. Using NE recursive formulation [23], the 

mathematical model describing the biped motion in the 

swing phase is obtained. The objective is to represent 

the equations for the single support phase in the 

following form 

𝑀(𝑞)�̈� + 𝑁(𝑞, �̇�)�̇� + 𝐺(𝑞)
= 𝑆𝑢 

(1) 

and to obtain matrices 𝑀(𝑞), 𝑁(𝑞, �̇�) and 𝐺(𝑞). In the 

Eq. (1) 𝑞 is vector of generalized coordinates depicted 

in Figure 1, the set (𝑞, �̇�) constitutes the state of the 

biped, 𝑀(𝑞) ∈ ℝ8×8 is the mass-inertia matrix, 

𝑁(𝑞, �̇�) ∈ ℝ8 contains the centrifugal and Coriolis 

forces terms, 𝐺(𝑞) ∈ ℝ8 is the vector of gravitational 

forces, 𝑢 = [𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]
𝑇 is the vector of 

control inputs and 𝑆 ∈ ℝ8×6  is a torque distribution 

matrix. Similar to [24] and based on [25] a modified 

Denavit-Hartenberg (DH) notation is used for 

geometric description of the biped model. For more 

details about geometric description and NE recursive 

method for the above mentioned model, see Appendix 

A. 

It should be mentioned that the equations are solved 

using a commercial software package (MATLAB 

release 2014a, The MathWorks, Inc., Natick, MA, 

USA) and the outputs which are the matrixes in Eq. (1) 

are written as functions for future uses.  

 

2. 2 Dynamic equations of contact events  

The end of the single support phase is characterized by 

a collision between the swing foot and the ground. The 

impact between the swing leg end and the ground is 

modeled as an instantaneous inelastic contact between 

two rigid bodies. The basic assumptions for impact are 

(i). the impact takes place over an infinitesimally 

small period of time;  

(ii). the model walks on a normal ground that is 

not slippery and sticky. The contact of the 

swing leg with the ground is assumed to be 

perfectly inelastic; 
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(iii). the external forces during the impact can be 

represented by impulses; 

(iv). impulsive forces may result in an 

instantaneous change in the velocities of the 

generalized coordinates, but the positions 

remain continuous; 

(v). the torque supplied by the actuators is not 

impulsive. 

The contact model requires the full 14 DOF of the 

robot. The position of the robot in the double support is 

defined by qe = [q, r0, α0]
T ∈ ℝ14 where r0 =

[x0, y0, z0] are the Cartesian coordinates of the stance 

foot and α0 defines the rotation along the x-axis of the 

stance leg. The velocity of the robot and the 

acceleration are defined by �̇�𝑒 = [�̇�, �̇�0, α̇0]
𝑇 ∈ ℝ14 and 

�̈�𝑒 = [�̈�, �̈�0, α̈0]
𝑇 ∈ ℝ14 respectively. The dynamic 

equation of the model in double support is represented 

as 

𝑀𝑒(𝑞𝑒)�̈�𝑒 + 𝑁𝑒(�̇�𝑒 , 𝑞𝑒) + 𝐺𝑒(𝑞𝑒) + 𝐷8𝐺𝑅𝐹9
= 𝐷𝑢𝑢 + 𝐷0 𝐺𝑅𝐹0 

(2) 

where 𝑀𝑒 ∈ ℝ
14×14 is the symmetric definite positive 

inertia matrix, 𝑁𝑒 ∈ ℝ
14 represents the Coriolis and 

centrifugal forces, 𝐺𝑒 ∈ ℝ
14 is the vector of gravity. 

𝐺𝑅𝐹0 = [ 𝑓0 , 𝑛0]
0  0 𝑇is the vector of the ground 

reaction forces and torques on the stance foot (there are 

no torques in this study), 𝐺𝑅𝐹9 =

[ 𝑓9 , 𝑛9]
9  9 𝑇represents the vector of forces exerted by 

the swing foot on the ground, 𝐷8, 𝐷𝑢 and 𝐷0 are 

matrices that allow to take into account the forces and 

torques in the dynamic model. The model of impact 

which can be deduced from integration of (2) in 

infinitesimal time and is 

𝑀𝑒(𝑞𝑒) (�̇�e
+ − �̇�e

−) + 𝐷8 𝐼9=𝐷0𝐼0 (3) 

where 𝐼9 and 𝐼0 are the intensity of Dirac delta-function 

for the forces 𝐺𝑅𝐹9 and 𝐺𝑅𝐹0, respectively. �̇�𝑒
+ is the 

velocity just after the impact and �̇�𝑒
− is the velocity 

just before the impact. Since the stance leg is assumed 

to detach from the ground without interaction, the 

external forces acting at the pivot point are zero (𝐼0 =
06×1). Thus, the impact dynamic model is 

𝑀𝑒(𝑞𝑒) (�̇�e
+ − �̇�e

−) = −𝐷8 𝐼9 (4) 

Additional equations can be obtained from the 

condition that the impacted leg does not rebound nor 

slips at impact, which is 

𝐷8
𝑇  �̇�e

+ = 06×1 (5) 

[
�̇�𝑒
−

𝜔0
−]

0

= [
03×1
03×1

] 
(6) 

Eq. (4), (5) and (6) are linear in the unknowns and 

determine the impulse forces 𝐼9 and the velocity vector 

of the biped after impact �̇�e
+ 

𝐼9 = (𝐷8
𝑇  𝑀𝑒

−1 𝐷8)
−1
 𝐷8
𝑇  �̇�𝑒

− (7) 

�̇�e
+ = −𝑀𝑒

−1𝐷8 (𝐷8
𝑇  𝑀𝑒

−1 𝐷8)
−1
 𝐷8
𝑇  �̇�𝑒

− + �̇�𝑒
− (8) 

Eq. (8) is an expression for �̇�e
+ in term of �̇�e

−, which 

should then be used to re-initialize the model (Eq. (1)). 

So, a change of coordinates is necessary since after 

impact with ground the swing leg becomes the new 

stance leg and vice versa. This is done by computation 

of the orientation and the angular velocity of the swing 

leg shank. From this, 𝑞0 ,𝑞1, and 𝑞2 in the new 

coordinate can be obtained that are compatible with this 

orientation. �̇�0 ,�̇�1 and �̇�2 are then obtained in similar 

way. The angles 𝑞3  to 𝑞8  exchange their roles as: 

[𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7, 𝑞8] → [𝑞8, 𝑞7, 𝑞6, 𝑞5, 𝑞4, 𝑞3]. 

To summarize, the global impact model that 

includes both the jumps in velocities and the swapping 

of coordinates and velocities can be shortly written as: 

(
qe

+ 

�̇�e
+ 
) = ∆(𝑞𝑒) (

qe
− 

�̇�e
− ) 

(9) 

where ∆ represents the global mapping matrix. 

 

2. 3 dynamic equations considering push 

The push can be happen in single support and or in 

double support phase of walking. It also can be 

considered as a force applied for an infinitesimal period 

of time (impulse) or a force applied for a finite duration 

of time. For the push occurring in the double support, 

14 DOF of the model should be included in the 

modeling, whereas for the single support phase only 

8DOF is sufficient. If the push is impulsive, impact 

dynamic equations of the model can be derived by 

applying the principles of linear and angular impulse 

and momentum. As an example of impulse and impulse 

moment equations derivation after impulsive push see 

ref. (18). In this paper, the push is considered as a force 

applied in finite time duration during the single support 

phase. Consideration of pushing force in the single 

support phase seems reasonable because the double 

support phase was considered to be instantaneous. 

However, even if the push occurs in the single support 

phase; its effect on the states of the model will be 

𝑧ℎ 
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appeared in the impact model of the subsequent double 

support. The method for relating the states of the 

system before impact and after impact obtained in the 

previous sub section is used. 

The free-body diagram of the model showing 

pushing forces is shown in Figure 2. 𝑃𝑦 and 𝑃𝑧 are the 

components of pushing force applied on the hip joints.  

 

Fig. 2. Free body diagram showing push forces applied on hip joints 

 

 

To solve the equations of motion in the presence of 

pushing forces it is sufficient to rewrite the Eq. A.8 (see 

the appendix) in inward iteration as follow  

𝑓𝑗 = 𝑅𝑗+1
𝑗

 𝑓𝑗+1
𝑗+1𝑗

+ 𝐹𝑗
𝑗

+ 𝑃𝑗   

 𝑃𝑗 = [0 𝑃𝑦 2⁄ 𝑃𝑧 2⁄ ]
𝑇
 𝑖𝑓 𝑗 = 4,7 𝑎𝑛𝑑  𝑃𝑗

≡ 0   𝑖𝑓 𝑗 ≠ 4,7.  

(10) 

 

2.  4 Overall model: hybrid system  

The overall biped model can now be expressed as a 

hybrid system with impulse effects. Assuming, x =
[qe, q̇e]

T and u = [u3, u4, u5, u6, u7, u8]
T, in the state 

space representation the model can be represented as 

{
(1)  Continous {ẋ(t) = f(x(t)) + g(x(t))u(t),     x−(t) ∉ S 

(2)  Impact model{x+(t) = ∆ x−(t),    x−(t) ∈ S
 

(11

) 

where S is switching surface. Contact with the ground 

is detected when the height of the swing leg is zero 

S = {(q, q̇)|xswing = 0 and zswing > 0} (12) 

3. Control strategy 

The eight independent degrees of freedom of the model 

during single support phase can be subdivided into two 

parts: 

𝑞u = [𝑞1, q2]
T ∈ ℝ2;   𝑞a = [𝑞3, q4, 𝑞5, q6, 𝑞7, q8]

T  
∈ ℝ6 

where 𝑞𝑢 and 𝑞𝑎 are un-actuated and actuated 

variables, respectively. The main idea in control design 

consists in the choice of particular reference trajectories 

for the actuated joints (𝑞a), to create a hybrid zero 

dynamic (HZD) for the dynamics of the un-actuated 

joints of the robot.  A discrete-time event based 

feedback controller is then implemented to track the 

obtained trajectory and control the robot to recapture its 

stable cyclic walking after contact events. The 

reference trajectories are adapted after each impact. 

Based on the method of virtual constraints [26], 

one holonomic constraint per actuator is considered in 

the form of an output that, when zeroed by a feedback 

controller, enforces the constraint. The constraint can 

be considered as 

𝑦 = ℎ(𝑞) = 𝑞𝑎 − ℎ𝑑(𝜃) (13) 

where 𝜃 is considered to be a quantity that is strictly 

monotonic (i.e., strictly increasing or decreasing) 

during the swing phase, and ℎ𝑑(𝜃) is the desired 

evolution of the actuated variables. Roughly speaking, 

𝜃 is used to replace time in parameterization of the 

trajectories. In a forward walking motion, if a virtual 

stance leg is defined by the line that connects the stance 

foot to the stance hip, then the angle of this virtual leg 

in the sagittal plane is monotonic (strictly increasing) 

because the z-coordinate of the hip increases 

monotonically. In this paper the length of the shank and 

the thigh are considered to be the same, and therefore 

the angle of the virtual leg is calculated as 

𝜃 = −(𝑞2 + 𝑞3 2⁄ ) (14) 

The minus sign is used to make 𝜃 strictly increasing 

over a step. The output 𝑦 = ℎ(𝑞) depends only on the 

configuration variables, its relative degree is at least 

two. Differentiating the output twice and using Lie 

notation and state space model (Eq. 11) gives 

�̈� = 𝐿𝑓
2ℎ(𝑞, �̇�) + 𝐿𝑔𝐿𝑓ℎ(𝑞)𝑢 (15) 

where the decoupling matrix 𝐿𝑔𝐿𝑓ℎ(𝑞) is supposed to 

be permanently invertible and using equation 1 it is 

defined as follows 

𝑃𝑧 2⁄  𝑃𝑧 2⁄  𝑃𝑦 2⁄  

𝑃𝑦 2⁄  
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𝐿𝑔𝐿𝑓ℎ(𝑞) =
𝜕ℎ(𝑞)

𝜕𝑞
𝑀−1𝑆 

 

A feedback controller to asymptotically drive the state 

of the robot to the constraint surface, is obtained by the 

input-output linearizing controller 

𝑢 = 𝑢∗ − (
𝜕ℎ(𝑞)

𝜕𝑞
𝑀−1𝑆)

−1

(
𝐾𝑝

𝜀2
𝑦 +

𝐾𝑑
𝜀
�̇�) (16) 

To zero the output y the required torque 𝑢∗can be 

computed as 

𝑢∗ = (
𝜕ℎ(𝑞)

𝜕𝑞
𝑀−1𝑆)

−1

(
𝜕2ℎ𝑑(𝜃)

𝜕𝜃2
�̇�2

+
𝜕ℎ(𝑞)

𝜕𝑞
𝑀−1(𝑁(𝑞, �̇�)�̇�

+ 𝐺(𝑞))) 

(17) 

If the feedback 𝑢 applied to Eq. 15 results in 

�̈� +
𝐾𝑑
𝜀
�̇� +

𝐾𝑝

𝜀2
𝑦 = 0 (18) 

Perfect tracking of the virtual constraints results in 

𝑞𝑎 = ℎ𝑑(𝜃) and reduces the dimension of the 

dynamics. If we represent the vector of un-actuated 

joints as 𝑞𝑢 = [𝑞1, 𝜃]
𝑇a linear relation exists between 

𝑞, 𝑞u , and 𝑞a 

𝑞 = 𝒯 [
𝑞𝑢
𝑞𝑎
] (19) 

where 𝒯 ∈ ℝ8×8 is an invertible matrix. Then, Eq. (1) 

can be rewritten as 

𝒯TM(q)𝒯 [
�̈�𝑢
�̈�𝑎
] + 𝒯T (𝑁(𝑞, �̇�)�̇� + 𝐺(𝑞))

= 𝒯TSu = [
02×6
𝐼6×6

] 𝑢 
(20) 

The dynamics of the un-actuated joints can be extracted 

from the first two lines of the above equation 

 M11(q)�̈�𝑢 +M12(𝑞)�̈�𝑎 + 𝑁1(𝑞, �̇�)�̇� +
(21) 

𝐺1(𝑞) = 02×1 

where M11 ∈ ℝ
2×2,M12 ∈ ℝ

2×6, 𝑁1 ∈ ℝ
2×1and 𝐺1 ∈

ℝ2×1 are appropriate components of the coefficients of 

equation (20). Substituting the expressions of 𝑞𝑎, �̇�𝑎, 

and �̈�𝑎 corresponding to the virtual constraints, the 

swing phase zero dynamics of the single support phase 

obtained 

M11(𝑞𝑢) [
�̈�𝑢
�̈�
] + M12(𝑞𝑢) (

𝜕ℎ𝑑(𝜃)

𝜕𝜃
�̈�

+
𝜕2ℎ𝑑(𝜃)

𝜕𝜃2
�̇�2)

+ 𝑁1(𝑞𝑢, �̇�u) + 𝐺1(𝑞𝑢)
= 0 

(22) 

This dynamic depends on the particular choice of the 

virtual constraint y = qa − hd(θ) = 0. In the rest of 

this section, determination of hd(θ) is summarized. 

hd(θ) should be designed in a way that retrieves the 

cyclic motion under push and in the absence of the 

push results in a periodic walking motion. 

Generation of virtual constraints is closely related to 

that of Chevallereau et al. [19, 20].The problem of 

generation of the virtual constraints can be cast as a 

parameter optimization problem. To this end, a 

derivable continuous periodical parameterized function 

that allows to easily taking into account boundary 

conditions on the configuration and velocity at the 

beginning and end of a step should be defined. Bezier 

polynomials have such characteristics and they have a 

local control property like B-spline curves. Here, the 

virtual constraints are parameterized with Bezier 

polynomials of degree 3 

ℎ𝑑(𝜃) = ∑𝛼𝑘
3!

𝑘! (3 − 𝑘)!
𝑠𝑘(1 − 𝑠)3−𝑘

3

𝑘=0

 (23) 

where 𝛼𝑘 are coefficients of Bezier polynomials, 𝑠 =
(𝜃 − 𝜃𝑖) (𝜃𝑓 − 𝜃𝑖⁄ ) is the normalized independent 

variable, 𝜃𝑖 and 𝜃𝑓 are the values of 𝜃 just before and 

just after the impact, respectively. Coefficients of 

Bezier polynomials must be determined so as to join 

initial configuration (𝑞𝑖)𝑎 to final configuration (𝑞𝑓)𝑎 

and initial angular velocity (�̇�𝑖)𝑎 to final angular 

velocity (�̇�𝑓)𝑎 when 𝜃 varies from 𝜃𝑖 to 𝜃𝑓. Therefore  

𝛼0 = ℎ𝑑(𝜃𝑖) = (𝑞𝑖)𝑎 (24) 
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𝛼1 = (𝑞𝑖)𝑎 +
𝜃𝑓 − 𝜃𝑖

3

𝜕ℎ𝑑
𝜕𝜃

(𝜃𝑖)

= (𝑞𝑖)𝑎 +
𝜃𝑓 − 𝜃𝑖

3

(�̇�𝑖)𝑎

�̇�𝑖
 

𝛼2 = (𝑞𝑓)𝑎 −
𝜃𝑓 − 𝜃𝑖

3

𝜕ℎ𝑑
𝜕𝜃

(𝜃𝑓) = (𝑞𝑓)𝑎

−
𝜃𝑓 − 𝜃𝑖

3

(�̇�𝑓)𝑎

�̇�𝑓
 

𝛼3 = ℎ𝑑(𝜃𝑓) = (𝑞𝑓)𝑎 

It should be mentioned that the evolution of the un-

actuated variables is obtained by integration of the 

dynamic subsystem (22). 

A periodic walking orbit can be calculated by 

minimizing the energy consumption per step 

𝐽 =
1

𝐿
∫ 𝑢∗𝑇
𝜏

0

𝑄 𝑢∗𝑑𝑡 (25) 

where 𝜏 is the walking period, 𝑄 is weighting matrix 

and 𝐿 is the step length.  The problem of optimization 

consisted of determining the initial and final 

configuration and velocity of the robot that could 

minimize the nonlinear objective function (Eq. (25)). 

To produce realistic values for optimization parameters 

the following constraints has been considered 

(a) 𝜃 is strictly increasing ( θ̇ > 0), 

(b) the swing foot is positioned above the ground 

(xswing > 0), 

(c) a step size constraint, 

(d) a friction constraint, 

 (e) the solution is periodic and symmetric with respect 

to the two legs. 

When an impact with ground occurs, in the beginning 

of each step, the virtual constraints may not be 

satisfied. The virtual constraints are modified after 

events so that they are compatible with the initial state 

of the robot at the beginning of each step. So the new 

output for the feedback control design is 

yc = h(q, yi, ẏi) = qa − hd(θ)
− hc(θ, yi, ẏi) (26) 

This output consists of the previous output (Eq. (13)), 

and a correction term hc that depends on Eq. (13) 

evaluated at the beginning of the step, specifically, yi =

qa,i − hd(θi) and ẏi = q̇a,i − (∂hd(θ) ∂θ)θ̇i⁄ , where the 

subscript i denotes the initial value for the current step. 

The values of yi and ẏi are updated at the beginning of 

each step. The function hc is taken as to be a three 

times continuously differentiable function of θ such 

that 

{
 
 

 
 

ℎ𝑐(𝜃𝑖 , 𝑦𝑖 , �̇�𝑖) = 𝑦𝑖
𝜕ℎ𝑐
𝜕𝜃

(𝜃𝑖) =
�̇�𝑖

�̇�𝑖

ℎ𝑐(𝜃𝑖, 𝑦𝑖 , �̇�𝑖) ≡ 0,   
𝜃𝑖 + 𝜃𝑓

2
≤ 𝜃 ≤ 𝜃𝑓 .

 (27) 

If ℎ𝑐 considered as above, the output and its derivative 

are smoothly joined to the original virtual constraint in 

the middle of the step. 

Event based ODE solver of MATLAB has been 

exploited to integrate the equations of motion. An event 

function locates the time when the height of swing leg 

(xswing) passes through zero and stop integration. This 

automatically detects the contacts of the leg with 

ground and then impact map is used to obtain the new 

initial condition for next step. It should be noted that 

the stability of the walking under closed-loop control is 

usually evaluated numerically with the linearization of 

the restricted Poincare´ map of the HZD [27, 28]. In 

this paper stability (convergence to the periodic 

motion) has been shown by simulations. 

4. Results and discussion  

4.1 Simulation results 

The physical parameters of the biped model for the 

simulations are listed in Table 1. The aims of 

simulation scenarios presented here are to demonstrate 

the capability of the method for cyclic gait generation 

and push recovery under different kind of push 

disturbances. Several scenarios have been considered. 

First consider normal periodic walking with a perturbed 

initial condition. Figure 3 displays the phase portrait of 

the joints in the absence of disturbance. This is as an 

illustration of the behavior of the states of the robot. 

Straight lines show the impacts with the ground. It is 

seen that there is a periodic orbit for the joints which 

shows the periodic stability of the motion. The step 

time and the step length for this cyclic walking are T =
0.245 s, L = 0.26 m, respectively. The applied torques 

on the actuated joints during periodic walking cycles 
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are shown in Figure 4. Figure 5 Shows stick diagram of 

the biped motion in three views. 

 

Table 1. Anthropometric parameters of the simulated model  

Segment Shank Thigh Torso 

Length (m) 0.405 0.405 0.773 

Mass (kg) 6.433 13.833 46.900 

Center of mass 

position (m) 
0.230 0.230 0.290 

 

 

 

Fig. 3.  Phase plane portraits of the joints for normal walking over 

eight steps. The star dots represent the initial state. 

 

 

Fig. 4.  The applied torques on the actuated joints during periodic 

walking cycles over eight steps. 

 

 

Fig. 5.  Stick diagram of the walking. 

The simulation results clearly show the convergence of 

the all trajectories (for both the controlled and 

uncontrolled variables) to an orbit. Now, consider a 

0.5𝑁𝑠 forward push in the sagittal plane is applied at 

the early swing phase of the fourth step of walking. 

Figure 6 depicts the phase portrait of the joint variables 

after above mentioned push, where we note the 

convergence to a cycle after a deviation due to push. 

The phase portrait plots of the joint variables after 

applying 0.3N𝑠 push in the early swing phase of the 

fourth step of walking in the frontal plane is depicted in 

Figure 7. The pushing force direction is from right to 

left when the left leg is supporting leg. The 

convergence to a periodic cycling is seen after a 

deviation due to push. Comparison of figure 6 and 

figure 7 shows that there are different evolutions of the 

states for all degrees of freedoms in the sagittal and 

frontal planes. For instance, for 𝑞2 the deviation is 

more when the push occurs in sagittal plane in 

comparison with frontal case. Figure 8 shows the phase 

plane portraits of the joints for a push in both planes 

(0.5𝑁𝑠 forward push and 0.3N𝑠 in the frontal plane 

from left to right) applying at the early swing phase of 

the fourth step. 
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Fig. 6. Phase plane portraits of the joints for 0.5𝑁𝑠 forward push in 

the sagittal plane at the early swing phase of the fourth step of 

walking. The star dots represent the initial state. 

 

Although, it is possible to use quantitative indexes [29] 

to show how robust the robot is, but we use a direct 

procedure to measure disturbance rejection abilities of 

the robot. The maximum pushes can be recovered in 

the sagittal and frontal planes at the early, mid and the 

late swing phase of the walking have been summarized 

in Figure 9 and 10, respectively. As seen, the capability 

of the biped for backward push recovery is more than 

with a forward push. This behavior can be explained as 

follows; the main critical moments for coming back to 

a stable motion after a push are the moments of 

applying and removing of the disturbance force. In the 

forward push after applying the force the controller 

tries to bring the model back to the stable posture but 

when the applied force zeroed (this is like a new 

disturbance in backward direction) the model lose the 

stability because the direction of reaction forces are 

against the walking direction. In the case of backward 

push, when the applied force removed (this is like a 

new disturbance in forward direction) the model can 

easily come back to a periodic walking cycle because 

the direction of reaction forces is same with walking 

direction.  

 

Fig. 7. Phase plane portraits of the joints for 0.3Ns push occurs in the 

frontal plane from right to left at the early swing phase of the fourth 

step of walking. The star dots represent the initial state. 

 

 

Fig. 8. Phase plane portraits of the joints for 0.5𝑁𝑠 forward push and 

0.3N𝑠 in frontal plane applied at the early swing phase of the fourth 

step of walking. The star dots represent the initial state. 

 

Although, it is possible to use quantitative indexes [29] 

to show how robust the robot is, but we use a direct 

procedure to measure disturbance rejection abilities of 

the robot. The maximum pushes can be recovered in 

the sagittal and frontal planes at the early, mid and the 

late swing phase of the walking have been summarized 

in Figure 9 and 10, respectively. As seen, the capability 

of the biped for backward push recovery is more than 

with a forward push. This behavior can be explained as 

follows; the main critical moments for coming back to 

a stable motion after a push are the moments of 

applying and removing of the disturbance force. In the 

forward push after applying the force the controller 
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tries to bring the model back to the stable posture but 

when the applied force zeroed (this is like a new 

disturbance in backward direction) the model lose the 

stability because the direction of reaction forces are 

against the walking direction. In the case of backward 

push, when the applied force removed (this is like a 

new disturbance in forward direction) the model can 

easily come back to a periodic walking cycle because 

the direction of reaction forces is same with walking 

direction. The same argument is true for frontal plane 

disturbances (Figure 10) except for the late swing. At 

the late swing phase, when the left leg is supporting leg 

and the push direction is from left to right, the 

controller can recover from large amount of the push 

since when the push removed there are only two 

controlling torques against walking direction while the 

inertia of the model helps to continue stepping. At the 

late swing phase the model also is about to contact with 

the ground which produces angular momentum helping 

recovery.  

 

Fig. 9. Maximum sagittal pushes the method can recover at early, mid 

and late swing phase. 

 

Fig. 10. Maximum frontal pushes the method can recover at early, 

mid and late swing phase. Left leg is supporting leg. 

The range of maximum 3D pushes can be recovered by 

the model using the control strategy is depicted in 

Figure 11. These results have been obtained during the 

course of several simulations with different values of 

pushing forces in the both sagittal and frontal planes. 

Due to nonlinearity of equations, it is difficult to obtain 

an analytical relation for the range of disturbances that 

can be rejected by the model. The results of Figure 11 

have been obtained for the push occurred at the early 

swing phase of the forth step of the walking. As seen, 

when a combination of sagittal and frontal forces 

exerted on the model, the values of forces in sagittal 

and frontal directions can be exceed the values obtained 

for only in one direction. However, the value of 

maximum pushes that can be recovered in our method 

even with high gain controller is not much in 

comparison with ZMP based fully actuated models (e.g. 

see ref. (13) in which as an example their model can be 

recovered from 20Ns push). Success of our control law 

in rejection of higher magnitude pushes needs online 

redesigning of the virtual constraints for actuated joints 

after applying the push which is computationally 

expensive.  

 

Fig. 11. The range of disturbing pushes that can be recovered by the 

method 

4.2 Robustness against parameters uncertainty 

In order to evaluate the robustness of the controller, 

two kind of parameter uncertainties are considered. 

First, an uncertainty of 15% for the nominal values of 

the inertias of the segments is considered. Figure 12 

displays the comparison of the phase portraits for 

nominal and uncertain simulations. It is seen that there 

is a new periodic orbit for the joints which shows the 

stability of the motion with uncertainties. Second, an 

uncertainty of 10% on the mass of the torso is 

considered. Figure 13 shows the convergence to a new 

stable cyclic trajectory for the all joints of the uncertain 

system. 
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Fig. 12. Phase plane portraits of the joints. The star dots represent 

the initial condition (IC). 

 

Fig. 13. Phase plane portraits of the joints. The star dots represent 

the initial condition (IC). 

4.3 Qualitative comparison of results with 

strategies observed in human  

Review of literature shows that most of the 

experimental work done by researchers are on the 

upright standing push recovery. But, there are few 

useful experimental results for human push recovery 

during walking [30-32]. Inspired by biomechanical and 

biological studies, some researchers have shown that 

the hip and ankle joints play an important role in rapid 

stepping to prevent falling during walking [33]. The 

first inspiration, hip strategy, is to generate a torque at 

the hip joint to compensate the angular acceleration 

induced by external forces. The second one, ankle 

strategy is to propel the leg by creating large torques at 

ankle joint. Researchers have also introduced another 

strategy for mid-swing disturbances which is called 

knee strategy. Knee strategy functions in a way of 

holding and adjusting the stiffness at knee joint in the 

way that it can support the upper extremity.  

In accordance with aforementioned strategies, 

some other researchers (e.g. [34]) have also reported 

that the more frequent strategies that are used by real 

subjects during perturbed swing phase of walking are  

(i). Elevating strategy which consists of elevation 

of the swing leg to overtake the obstacle. The 

step is lengthened (longer step time), 

(ii). Lowering strategy consists of bringing the foot 

to the ground as quickly as possible. The step 

lengths and time are reduced,  

(iii). Delayed lowering strategy could be 

understood as a failed elevating strategy in 

which the subject first tries an elevating 

strategy and then switches to a lowering one. 

It should be noted that, human being reactions can be 

affected by neurological (e.g. muscular activation 

delay), psychological (e.g. fear of falling) and 

mechanical limitations (maximum torque and joint 

ranges of motion). For a biped model only the 

mechanical limitations make sense.  

In all the simulations have been done for the current 

work, the delayed lowering strategy never were seen. 

For forward push the reaction of the model is like 

lowering strategy and the step time is reduced while the 

step speed is relatively increased.  For backward push 

elevating strategy is used by the model to come back to 

periodic walking and the step time is increased while 

step speed is reduced. It should be noted that the model 

of this work, like all the other models based on 

conventional mechanics and controls, has inherent 

limitations (e.g. no actuation on the ankle joint). But, 

even whit this model it is possible to characterize 

obtained results in terms of movement strategies 

observed in the human after push. 

5. Conclusions 

In this paper an inverse biomimetic approach has been 

implemented to reproduce human reactions under 

pushing disturbance during walking. Generally, the 

main purpose of this work was to improve the 

compatibility and transferability of findings between 

roboticists and biologists. The results showed the 

ability of HZD feedback control method to reproduce 

human like movements for push recovery of an under-

actuated 3D biped model when walking on a flat 

surface. This approach is based on the consideration of 

holonomic constraints on the configuration variables of 

the robot. These constraints are then used to construct 
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outputs of the system and when imposed by event-

based feedback controller cause the robot to move in a 

stable manner. A constrained trajectory optimization, 

with initial and final configurations as the design 

parameters, is run offline to obtain optimum 

configuration of the robot in the end of the swing phase 

of walking. The outputs of system (reference trajectory 

of controller) are adjusted in the end of each contact 

with the ground to be compatible with the initial state 

of the robot at the beginning of next step. The results of 

our study showed the convergence of the all trajectories 

to a cyclic motion after push occurring in the sagittal 

and frontal plane and also in the both directions 

simultaneously. The results clearly showed that the 

ability of model in backward push recovery is more 

than forward push and the capability in tackling frontal 

pushes depends on which leg is supporting leg and also 

the direction of the pushing force. The amount of 

pushing disturbances can be rejected in the early swing 

phase is more than mid swing phase and it is also more 

than the late swing phase. It has also seen that the 

simulated results can be characterized in terms of some 

strategies observed in human being movements against 

perturbations. However, altogether the results showed 

that although the amount of the disturbance which can 

be rejected with this under-actuated model is not much 

but the motions obtained are natural and human like. 

We believe that adding appropriate learning algorithms 

will effectively increase the maximum push recovery 

capability (there is similar fact in biology, compare 

push recovery capability of the professional athletes 

and non-athletes persons or kids and adult persons).  

     In a future work, the control method will be 

extended to a robot model with higher degrees of 

freedom. Push recovery experiments on human will be 

done using motion capture systems. Parameters of the 

method then will be modified to obtain results which 

are mostly close to the experiments. It will be the 

subject of future work to design robust and adaptive 

controllers to overcome uncertainties. The quality of 

recovery (energy consumption) will also be considered.  
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Appendix A. Dynamic Equations based on NE 

recursive method 

Suppose the robot is composed of n+l links, link (0) is 

the fixed base, while link (n) is the terminal link. Joint 

(j) connects link (j -1) and link (j). Let  

𝑅𝑗 the fixed frame with  respect to link (j), 

𝑧𝑗  the axis of joint (j), 

𝑥𝑗 the common perpendicular of  𝑧𝑗 and 𝑧𝑗+1 (Figure 

A1).  

 

The following parameters are required to define the 

frame (𝑅𝑗) with respect to frame (𝑅𝑗−1) 

𝛼𝑗: angle between 𝑧𝑗−1 and  𝑧𝑖 about 𝑥𝑗−1, 

𝑑𝑗: distance between 𝑜𝑗−1 and 𝑧𝑗, 

𝑟𝑗 : distance between 𝑜𝑗 and 𝑥𝑗−1, 

𝜃𝑗 : angle between 𝑥𝑗−1 and  𝑥𝑗 about 𝑧𝑗. 

 

Figure A1. Notation for two adjacent joints. 

The above parameters for the model presented in 

Figure 1 are given in Table A1. It should be noted that 

for the biped model n=8 and 𝑞9 = 0. It is considered 

that the frame (𝑅0), is fixed to the tip of the stance foot 

and the frame (𝑅9) is fixed to the tip of the swing foot. 

𝑜𝑗−1 
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Table A1. Modified D-H parameters of the model 

Joint αj θj rj 𝑑𝑗 

1 0 𝑞1 0 0 

2 𝜋 2⁄  𝑞2 0 0 

3 0 𝑞3 0 𝑑3 

4 0 𝑞4 𝑟4 𝑑4 

5 −𝜋 2⁄  (𝑞5 − 𝜋 2⁄ ) 0 0 

6 0 (𝑞6 − 𝜋 2)⁄  0 𝑑6 

7 −𝜋 2⁄  𝑞7 0 0 

8 0 𝑞8 𝑟8 𝑑8 

9 0 𝑞9 = 0 
𝑟9
= 0 

𝑑9 

The transformation matrix is then equal to 

𝑇𝑗
𝑗−1

= 

[
 
 
 

𝑐𝑜𝑠 𝜃𝑗 −𝑠𝑖𝑛 𝜃𝑗
𝑐𝑜𝑠 𝛼𝑗 𝑠𝑖𝑛 𝜃𝑗 𝑐𝑜𝑠 𝛼𝑗 𝑐𝑜𝑠 𝜃𝑗

0  𝑑𝑗
−𝑠𝑖𝑛 𝛼𝑗 −𝑟𝑗 𝑠𝑖𝑛 𝛼𝑗

𝑠𝑖𝑛 𝛼𝑗 𝑠𝑖𝑛 𝜃𝑗 𝑠𝑖𝑛 𝛼𝑗 𝑐𝑜𝑠 𝜃𝑗
0 0

𝑐𝑜𝑠 𝛼𝑗 𝑟𝑗 𝑐𝑜𝑠 𝛼𝑗
0 1 ]

 
 
 
 

The geometric model of the robot will be obtained by 

the successive multiplication of the transformation 

matrices.  

𝑇𝑛 =
0 𝑇1

0 𝑇2
1 … 𝑇𝑛

𝑛−1  

 

NE method is based on two recursive calculations; 

outward and inward calculations. The outward 

calculation, from the base (stance foot) to the terminal 

link (swing foot) determines the velocity, the 

accelerations, and the total forces and moments on each 

link. Then the inward calculations, from swing foot to 

stance foot, gives the joint torques and reaction forces 

using equation of equilibrium of each link successively. 

Outward iterations 𝒋 = 𝟏 → 𝟗 

During single support phase the contact point of the 

robot remains on the ground, the initial conditions are 

𝜔0 0=06×1  , 𝜔0̇
   0 = 06×1  and  �̇�0

0  =-[𝑔 0 0]𝑡  

Angular velocity of link j ( 𝜔𝑗
𝑗

) and the linear velocity 

of the origin 𝑜𝑗 of 𝑅𝑗 ( 𝑉𝑗
𝑗

) are obtained as 

𝜔𝑗 = 𝑅𝑗−1
𝑗

𝜔𝑗−1
𝑗−1𝑗

+  �̇�𝑗 𝑍𝑗
𝑗

 (A.1) 

𝑉𝑗
𝑗

= 𝑅𝑗−1
𝑗

( 𝑉𝑗−1
𝑗−1

+ �̂�𝑗−1 × 𝑃𝑗
𝑗−1𝑗−1

) (A.2) 

 

in which  𝑅𝑗−1
𝑗

 is the orientation matrix of the frame 

𝑅𝑗−1 in the frame 𝑅𝑗 and 𝑍𝑗 is a unit vector along the 𝑍 

axis, 𝑃𝑗
𝑗−1

 is the vector expressing the origin of frame 

𝑅𝑗 in the frame 𝑅𝑗−1. The angular acceleration of link j 

and the linear acceleration of the origin 𝑜𝑗 of 𝑅𝑗 are 

�̇�𝑗 = 𝑅𝑗−1
𝑗𝑗

 �̇�𝑗−1 + 𝑅𝑗−1
𝑗𝑗−1

𝜔𝑗−1
𝑗−1

 �̇�𝑗 𝑍𝑗
𝑗

+ �̈�𝑗  𝑍𝑗
𝑗

 

(A.3) 

�̇�𝑗
𝑗

= 𝑅𝑗−1
𝑗

( �̇�𝑗−1 ×
𝑗−1

𝑃𝑗
𝑗−1

+ 𝜔𝑗−1 × ( 𝜔𝑗−1 ×
𝑗−1𝑗−1

 𝑃𝑗
𝑗−1

) + �̇�𝑗−1
𝑗−1

) 

(A.4) 

The linear acceleration of mass center of segment 𝑗 
relative to the frame 𝑗 is 

�̇�𝑐𝑗
𝑗

= �̇�𝑗 ×
𝑗

𝑃𝑐𝑗
𝑗

+ 𝜔𝑗 × ( 𝜔𝑗 ×
𝑗𝑗

 𝑃𝑐𝑗
𝑗

)

+ �̇�𝑐𝑗−1
𝑗−1

 

(A.5) 

where 𝑃𝑐𝑗
𝑗

 is the position vector of mass center of the 

link 𝑗 relative to the frame 𝑗. Inertia force ( 𝐹𝑗
𝑗

) and 

inertia torque 𝑁𝑗
𝑗

 are obtained as follow 

𝐹𝑗 = 𝑀𝑗
𝑗

 �̇�𝑐𝑗
𝑗

 (A.6) 

𝑁𝑗
𝑗

= 𝐽𝑗
𝑐𝑗

  �̇�𝑗 +
𝑗

𝜔𝑗 × 𝐽𝑗
𝑐𝑗

 × 𝜔𝑗
𝑗𝑗

  (A.7) 

in which 𝐽𝑗
𝑐𝑗

 is inertia tensor of the link 𝑗 with respect 

to the frame 𝑐𝑗 which is located in the center of mass of 

the link 𝑗. 

Inward iterations 𝒋 = 𝟗 → 𝟏 

The force exerted on segment 𝑗 by segment 𝑗 − 1 and 

torque exerted on segment 𝑗 by segment 𝑗 − 1 are 

obtained 

𝑓𝑗 = 𝑅𝑗+1
𝑗

 𝑓𝑗+1
𝑗+1𝑗

+ 𝐹𝑗
𝑗

  (A.8) 

𝑛𝑗
𝑗

= 𝑁𝑗
𝑗

+ 𝑅𝑗+1
𝑗

 𝑛𝑗+1
𝑗+1

+ 𝑃𝑐𝑗 × 
𝑗

𝐹𝑗
𝑗

+ 𝑃𝑗+1 × 
𝑗

𝑅𝑗+1
𝑗

𝑓𝑗+1
𝑗

 

 (A.9) 

The torque 𝑢𝑗 (components of 𝑢 in Eq. (1)) is then 

obtained by projecting 𝑛𝑗
𝑗

 along the joint axis 𝑍𝑗
𝑗

: 

𝑢𝑗 = 𝑛𝑗
𝑗

𝑍𝑗
𝑗

 (A.10)  

It should be noted that in the single support phase 

𝑓9 = 0
9  and 𝑛9 = 0

9 . 



International Journal of Robotics, Vol. 5, No. 1, (2019) Miripour Fard et al., 1-15 

15 

 

Biography 

 Behnam Miripour Fard received 

his BSc degree in Mechanical 

Engineering from the University of 

Guilan, Rasht, Iran in 2005, his MSc 

degree in Mechanical Engineering 

from the Bu-Ali Sina University, 

Hamedan, Iran, in 2008, and his 

Ph.D. degree in Mechanical 

Engineering from the University of Guilan, Rasht, Iran 

in 2013. From Apr. 2012 to Oct. 2012, he was a 

visiting PhD Student at Robotics Institute of Carnegie 

Mellon University, Pittsburgh, PA, USA. He is 

currently an Assistant Professor and the head of the 

Robotics Engineering Department of the Hamedan 

University of Technology, Hamedan, Iran. Dr. 

Miripour Fard is the author/coauthor of over 40 

technical publications, proceedings, editorials and 

books. He has been a Member of Iranian Elite 

Foundation and Inventors Association since 2007. His 

research interests include; Dynamical modeling of 

Mechanical systems, Path Planning and Control of 

Humanoid Biped Robots, Limit Cycle Walking, 

Disturbance Rejection of Legged Locomotion, 

Predictive Dynamics and Bio-mimetic approaches in 

robotics.  

Ahmad Bagheri received his BSc 

degree in Mechanical Engineering from 

the University of Mashhad, Mashhad, 

Iran in1989, his MSc degree from the 

University of Tarbiat Modares, Tehran, 

Iran in 1993, and his Ph.D. degree in 

Mechatronics from Czech Technical 

University in Prague, Prague, the Czech Republic, in 

1997. He is currently serving as a Full Professor of 

Mechanical Engineering Department of The University 

of Guilan, Rasht, Iran. His research interests include 

mechatronics, biped locomotion, robot modeling and 

control, and industrial robotics. 

 

Nader Nariman-zadeh received 

his MSc (Eng.) degree in 

mechanical engineering from 

Tehran University, Iran, in 1986 

and the PhD degree in intelligent 

control from Salford University, 

England, in 1996. He then joined 

the Department of Industrial 

Manufacturing and Systems 

Engineering of the University of Hong Kong for his 

postdoctoral period. He is a professor in the 

Department of Mechanical Engineering of the 

University of Guilan and Intelligent-based 

Experimental Mechanics Center of Excellence, School 

of Mechanical Engineering, Faculty of Engineering, 

University of Tehran. He was also a visiting associate 

professor at the University of Birmingham, UK, 2002–

2003. He has served as the head of Mechanical 

Engineering Department, dean of faculty of 

Engineering, deputy of chancellor in research of the 

University of Guilan. His research interests are 

intelligent control and modelling using evolutionary 

algorithms, fuzzy logic, and GMDH-type neural 

networks, multi-objective optimization in modelling 

and control, robust and reliability-based design and 

optimization using evolutionary algorithms. 

 

http://guilan.ac.ir/
http://guilan.ac.ir/
http://www.basu.ac.ir/
http://guilan.ac.ir/
http://www.ri.cmu.edu/
http://www.ri.cmu.edu/
http://www.hut.ac.ir/
http://www.hut.ac.ir/

