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This work intends to deal with the optimal kinematic synthesis problem of Tricept 
parallel manipulator. Observing that cuboid workspaces are desirable for most 
machines, we use the concept of effective inscribed cuboid workspace, which 
reflects requirements on the workspace shape, volume and quality, simultaneously. 
The effectiveness of a workspace is characterized by the dexterity of the 
manipulator all over its workspace. Tricept has a complex degree of freedom, i.e. 
both rotational and translational DoF, therefore its performance indices depend on 
the singular values of the dimensional in-homogeneous Jacobian. Here, we divide 
the Jacobian entries by units of length, thereby producing a new Jacobian that is 
dimensionally homogeneous. By multiplying the associated entries of the twist 
array to the same length, we made this array homogeneous as well. This implies 
some sort of tradeoff between position and orientation components of the twist 
array. An optimal design problem, including constraints on actuated and passive 
joint limits, is then formulated. This problem is a constrained nonlinear 
optimization problem. Therefore, Genetic Algorithm toolbox of Matlab is adopted 
to solve the problem. 

 

 

1. Introduction  

Parallel manipulators have received extensive attention 
over the last two decades for their potential superior 
properties, such as low inertia, high stiffness, high 
precision and high load carrying capacity [1-3]. 
However, they suffer from smaller workspace relative 
to their serial counterparts. Choosing a set of geometric 
parameters so as to achieve optimal performance is of 
vital significance in robotics research [4-6]. Among all 
kinematic measures, workspace is the most important 
index in the design of a parallel manipulator. A parallel 
manipulator designed only for maximum workspace 
volume may not however be a good design in practice. 
It is possible that the manipulator with maximum 
workspace has undesirable kinematic characteristics 
such as poor dexterity and irregular shape [7]. In order 
to avoid undesirable effects of workspace volume 
maximization, researchers introduced other  

 
performance indices into the optimal design problem 
[8-10]. Li and Xu [8] optimized Delta as a translational 
parallel manipulator to have a good conditioning index 
and stiffness. In [10] 3-PRS optimization to achieve 
maximum dexterous workspace (MDW) was performed. 
In [7] MDW of Tricept manipulator was addressed, 
using Genetic Algorithm (GA) method, while the shape 
of the workspace is much more important  in some 
applications of robots. Liu and Li addressed the optimal 
effective regular workspace of parallel manipulators 
[11].  
In this paper, the workspace of Tricept is parameterized 
using some design parameters. Moreover, some 
geometric constraints are considered in the problem. 
Because of nonlinear discontinuous behavior of the 
problem, GA is used to optimize the workspace. For the 
workspace of the manipulator, we evaluate local 
conditioning indices (LCI) and minimum singular 
values (MSV). Then, we maximize the workspace of 
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the manipulator subject to the constraints on LCI and 
MSV. In practice, although a cuboid workspace is 
desirable, parallel manipulators often have 
irregular-shaped workspaces due to their complex 
kinematic structures. Tricept does not exempt from this 
rule. A design solely for maximal workspace may not 
have the maximal cuboid workspace. Therefore, the 
optimal design problem is formulated to maximize the 
volume of inscribed cuboid in the workspace subject to 
dexterity constraints; namely, LCI and MSV.  
Furthermore, a design purely for maximal inscribed 
cuboid (MIC) workspace may also lead to smaller 
workspace volume. Therefore, we use the concept of 
effective inscribed cuboid workspace, which reflects 
requirements on the workspace shape, volume and 
quality, simultaneously. That is, we employ a linear 
combination of measures on the volume of workspace 
and MIC in the objective function, while keeping the 
above mentioned quality constraints. 
 
2. Tricept Mechanism 
One of the most famous parallel manipulators with 
machine tool application is Tricept family which has 
both rotational and translational degrees-of-freedom 
(dof) [12]. A comparison study is performed by Pond 
[13] between Tricept and some other parallel robots 
with the same number of degrees of freedom, such as, 
3-PRS and 3-RPS by considering their condition 
numbers and maximum and minimum singular values. 
The manipulator has three actuated limbs which 
connect the base to the moving platform. Each of these 
limbs consists of a spherical-prismatic-spherical (SPS) 
kinematic chain, where only the prismatic joint is 
actuated. Alternatively, one of the spherical joints can 
be replaced by a universal joint. Moreover, a passive 
prismatic-universal (PU) limb connects the center of the 
moving platform to the base. We attach frames {P 
(uvw)} and {O (xyz)} to the moving and base platforms, 
respectively. When the moving platform is parallel to 
the base, the two revolute axes of the universal joints of 
the center passive leg are parallel with the base frame's 
x and y axes, respectively. 
Siciliano [14] studied the kinematics and manipulability 
of Tricept. Pond and Corretero formulated its square 
dimensionally homogeneous Jacobian matrices based 
on three independent coordinates of three nodes of the 
moving platform [15]. Architectural optimization of 
Tricept was studied by Zhang and Gosselin [16]. They 
used GA to optimize the stiffness and end-effector (EE) 
accuracy. 

2.1. Velocity Analysis 

The loop closure equation for the ith leg can be written 

as: 

(1)    
( )i i bi i lib l   Rc a d n n  

where c and d are the vectors from O to C and C to P, 
respectively. While R is rotation matrix carrying frame 

{P} into an orientation coincident with that of frame 
{O}; ai is the position vector from P to Ai in frame {P}; 
bi is the position vector of point Bi in the global frame. 
Moreover, nbi and nli are the unit vectors showing the 
directions of vectors bi and li, respectively. 

 
Figure 1: Tricept structure and geometric model. 

Taking the first time derivative of Eq.1 yields: 

( ( ))p i i li l i lil l     R c ω a d n ω n  (2) 

where ωp and ωl are the angular velocity vectors of the 
EE and limb, respectively. Pre-multiplying both sides of 
Eq.2 by nli

T, upon simplifications and written them for 
for i=1...3, yields: 

(3)  1 J  x q  

where 
T

c    
 x = is the three dimensional 

twist vector; 1 2 3

T
l l l  
  q =  is the three 

dimensional actuator velocity vector and J-1 is the 
inverse Jacobian matrix, namely;  
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(4) 

3. Workspace Analysis 

In this section, we study the workspace of a Tricept 
manipulator numerically. 

3.1. Algorithm 

In order to generate the workspace of a Tricept parallel 
manipulator, we divide the three dimensional ψ-θ-Z 
workspace of the moving platform into a series of 
sub-workspaces that are parallel to ψ-θ plane. Then a 
numerical searching method, was introduced in [17, 18], 
is adopted here to determine the boundary of the 
sub-workspaces. Finally, the volume of workspace is 
calculated quantitatively. 

3.2. Geometric Constraints 

These constraints include the actuators lengths (l) and 
the spherical and universal joints limitations. It is 
simple to calculate the cone angle of joints (ζ) by using 
the geometric constraints and kinematics relations, as 
shown in figure 2. The geometric constraints of the 
Tricept are given in Table 1. 
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3.3. Design Constraints 

In order to guarantee the workspace to be effective, 
constraints on the dexterity indices are introduced to 
characterize quality of the workspace. 

 

Figure 2: Geometric constraints of Tricept robot. 

Table 1: Geometric constraints of the Tricept manipulator. 

 
Condition number is quite often used as an index to 
describe the dexterity of a robot and the distance of a 
pose from a singularity. The condition number also 
measures the magnitude of the relative error of the 
wrench introduced by the relative error in joint torques 
and reflects the sensitivity of the wrench due to joint 
torque error. Similarly, the use of minimum allowable 
singular value restricts the workspace to poses where 
the manipulator moves at a minimum allowable speed. 
Here, we optimized Tricept for dexterity measures, 
namely; the inverse of condition number as a LCI and 
the MSV. 
In engineering applications, we often attach a great 
importance to study the dexterous workspace (DW) of a 
manipulator rather than the reachable workspace. 
Moreover, kinetostatic performance or dexterity 
measures how well the system behaves with regard to 
force and motion transmission. Several dexterity 
criteria could be taken into account; such as service 
angle, manipulability, MSV, maximum singular values 
and condition number [19]. Condition numbers and 
MSV of the Jacobian matrices are known as a 
kinetostatic performance index of parallel manipulators 
[20, 21]. Indeed, in order to determine the condition 
number and MSV of the Jacobian matrices, we must 
order their singular values from largest to smallest. 
However, in the presence of positioning and orienting 
tasks, three of these singular values, namely, those 
associated with positioning, are dimensionless; while 
those associated with orientation have units of length, 
thereby making impossible such an ordering.  
Ranjbaran and Angeles [22] resolved this inconsistency 
by defining a characteristic length, by which they 
divided the Jacobian entries that have units of length, 

thereby producing a new Jacobian that is dimensionally 
homogenous. Ma and Angele [20] introduced another 
ratio called natural length and used it for design 
optimization. Chablat et al., used characteristic length 
to determine the design parameters of a planar parallel 
mechanism with PRR chains to have an isotropic 
condition [23]. Gosselin [24] introduced a method for 
formulating dimensionally homogenous Jacobian 
matrix for a planar mechanism with one rotational and 
two translational dof. The Jacobian matrix relates the 
actuator velocities to the velocities of the x and y 
coordinates of two points on the EE platform. Kim and 
Ryu [25] furthered this work by using the velocities of 
three points on the EE platform to develop a 
dimensionally homogenous Jacobian matrix. Pond and 
Corretero [15] further developed this method by using 
three independent coordinates of three points on EE 
platform. Moreover, Angeles [26] introduced 
engineering characteristic length for a rigid body 
transformation matrix to make it homogenous. 
Mansouri [27] used power transition concept to make 
the Jacobian homogeneous. Hosseini et. al. [7] resolved 
the inconsistency by defining a weighting factor, by 
which they divided the Jacobian entries that have units 
of length, thereby producing a new Jacobian that is 
dimensionally, homogeneous. Moreover, one might 
choose different weighting factors for different 
coordinates of twist array and the associated columns of 
the Jacobian matrix, even those with the same units.  
Dividing the second and the third columns of the 
Jacobian matrix of Eq. 3 by a length and multiply the 
second and the third coordinates of the twist vector to 
the same length leads to the following dimensionally 
homogeneous relation: 
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(5)  

 

 

Physically, this implies some sort of tradeoff between 
position and orientation components of twist array. This 
weighting factor should be constant throughout the 
workspace. The designer should choose the weighting 
factor based on the application of the mechanism. For 
example, in a milling operation as depicted in Figure 3, 
the radius of end-milling cutter is the length that relates 
the tangential cutting force to the torque and should be 
chosen as the weighting factor by the designer. It is 
noteworthy that the same factor relates angular velocity 
to linear velocity. Moreover, one might compare one 
unit of the linear velocity with m×l units of angular 
velocity around x axis and n×l units of angular velocity 
around y axis. So, we can assign different weighting 
factors to the different coordinates of the twist vector 

ra 

(mm) 

rb 

(mm)  

d 

(mm)  

ζ 

(deg) 

Actuator Length 

(mm)  

200‐300  300‐500  0‐200  ±60  400‐750  
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Figure 3: Weighting factor in a milling operation. 

4. GENETIC ALGORITHM OPTIMIZATION 

One of the drawbacks of parallel manipulators is their 
limited workspace. It is more limited in the presence of 
constraints such as dexterity, isotropy and joints limits. 
Clearly the optimal design problem is a constrained 
nonlinear optimization problem. Here, we resort to a 
direct search method; namely, GA which was widely 
studied as a global optimization technique [28-31]. The 
algorithm is robust, i.e., it normally works regardless of 
irregularities of the objective function.  

4.1. Setup of the GA Optimization 

● Design Variables 

There are three parameters in the optimization 
process which define the manipulator architecture. 
They are the moving and base platform radiuses (ra 
and rb), and the upper part of middle link length (d) 
whit their boundaries as given in Table 1. 

● GA Optimization Setup 

In order to apply the GA for optimization, six 
fundamental issues are required to be determined, 
i.e., the chromosome representation, selection 
function, genetic operators, population size, 
termination criteria, and evaluation function [30]. 
For the current optimization problem, the objective 
functions are chosen as the evaluation functions. 
Moreover, actuators length, joints limitations are the 
geometric constraints, while lower bound of MSV 
and LCI are the design constraints. 
 

5. Case Study 

5.1. Maximal Workspace Volume with Geometric 
Constraints 

Here, the workspace is parameterized using three 
design parameters; namely, the moving and base 
platform radiuses (ra and rb) and the upper part of 
passive link length (d), all summarized in the vector 
form as λ=[ra  rb  d]T. 
Then, using GA method, the workspace is optimized 
subjects to some geometric constraints as given in table 
1. Therefore, our optimization problem yields to: 

(6)  V*=Max(V(d, ra, rb)) 
 
Subject to: 

 200< ra < 300, 300 < rb < 500, 20 <d <200, 2- 
400<Actuator Length(l)<750, -60< ζi<60 deg 
 

in which V is a function to calculate the workspace 
volume. Solving this optimization problem by GA leads 
to the data given in Table 2, in which the maximal 
workspace is 858.9751 mm.Rad2.  

 

5.2. Constraints Evaluation 

In the followings, we evaluate non-geometric 
constraints; namely, MSV and the inverse of condition 
number of the Jacobian as LCI for different elevation 
ranges of the foregoing manipulator. The workspace 
volume versus lower bound of LCI and MSV is 
depicted in figure 4. As the minimum permissible limit 
on singular values is increased, the workspace 
continues to be reduced. Moreover, as the minimum 
permissible limit on LCI is increased, the workspace 
continues to be reduced, as well. 
 

Table 2: Maximal workspace volume with geometric constraints. 

ra 

(mm) 

rb  

(mm)  

d 

(mm)  

V* 

(mm.Rad2) 

No. of 

Iteration  

200  300  20  858.9751 51  

 

Considering any minimum permissible limit on singular 
values leads to the workspace with lower bound for EE 
velocities; while considering the minimum permissible 
limit on LCI leads to the manipulator as close as to 
isotropic conditions. For the workspace of the 
manipulator, depicted in Table 2, considering the 
minimum permissible limit on LCI to be greater than or 
equal to 0.6 and MSV to be greater than or equal to 1, 
yields to the workspace of Figure 5, with the volume of 
267.4887Rad2.mm. This volume is 68.86% smaller than 
the original one, without considering these constraints. 

 

Figure4: Maximal workspace volume verses the minimum 

permissible limits on LCI and MSV.  
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Figure 5: Sub-workspace of the maximal workspace by limiting 

MSV and LCI. 

5.3. Dexterous and High Velocity Workspace 
Volume  

In the followings, the workspace volume of the Tricept 
is optimized by constraining the MSV and LCI of the 
Jacobian matrix to be within a desired range along with 
the geometric constraints of Table 1. Therefore, the 
optimization problem can be re-written as: 

(7)  W*=Max(V(c, ra, rb)) 

Subject to: 

1- LCI >= 0.6, σmin>=1 

2-200< ra < 300, 300 < rb < 500, 20 <d 

<200, 400<Actuator Length(l)<750, 

-60<ζi<60deg  

 

Solving this problem by GA leads to the data given 
in Table 2, in which the maximal workspace is 
369.4139 mm.Rad2, which is 38.1% more than that 
volume of Figure 5. This workspace is illustrated in 
Figure 6. 

 

Table 3: Optimization results for design constrained workspace. 

ra       

(mm) 

rb   

  (mm) 

d   

  (mm) 

W*     

(mm.Rad
2
) 

No. of   

Iteration 

203.052 454.518 127.293 369.4139 52 

 

 

Figure 6: Maximal dexterous workspace (DW). 

5.4. Effective Inscribed Cuboid Workspace 

As it is depicted in the Figure 6, MDW might lead to an 
irregular shape. Therefore, it is essential to reach a 
maximal workspace as close as to a regular shape such 
as a cuboid or a cylinder. In the following, using GA 
method, we will find the MIC. It is noteworthy that we 
will give different weights to the rotational dof than the 
translational one. 

5.4.1. Maximal Inscribed Cuboid 

Here, we use an iterative search algorithm to find the 
MIC in the workspace. This method includes the 
following steps: 

Step1. Cuboid center determination: Due to 
symmetry, the coordinates of the cuboid center, without 
loosing of generality, is assumed as ψ=0, θ=0 and Z 
equal to the average altitude of the EE in the 
workspace.  

Step2. A complete rotation of a cuboid around Z 
axis: For each step, the lengths of the cuboid will be 
increased incrementally. The largest inscribed cuboid in 
each step of rotation will be registered. 

Step3. The MIC: The largest registered cuboid and 
its related rotation can define the MIC in the DW. 

Figure 7 illustrates the MIC in the DW, in which we 
have the volume of cuboid equal to 88.3362 mm.Rad2, 
and its aspect ratio equal to 208.687. However, the 
related DW is 307.2612 mm.Rad2; some 17% smaller 
than the MDW of Figure 6. These design parameters is 
summarized in Table 4. 

 

Table 4: MIC and the design parameters. 

ra rb d A.R. MICVolume
(mm.Rad

2
) 

DWVolume
(mm.Rad

2
) 

No. of 
Iteration 

202.041321.742 39.542 208.687 88.3362 307.261251
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a. MIC in the related DW 

 

b.DW includes the MIC 

Figure 7: MIC in DW with A.R. 208.687 

 
 

5.4.2. Maximal Inscribed Cuboid with a Desired 

Aspect Ratio 

Here, using the same algorithm, we find MIC in the 
DW with a desired aspect ratio equal to 200. Moreover, 
the MIC in the DW leads to the data of Table 5 which is 
illustrated in Figure 8. As it is expected, the volume is 
further decreased to 83.601 mm.Rad2, which only fills 
25.13% of the DW volume. 

5.5. Effective Inscribed Cuboid Workspace 

Here, we employ a linear combination of measures on 
the volume of workspace and MIC in the objective 
function, while keeping the above mentioned  quality 
constraints, i.e., the objective function is defined as: 

max (1 ) c

max max

VW
V

w v
 
 

   
 

               (8) 

where, wmax and vmax are the largest workspace and the 
volume of the MIC, respectively. Also, W and Vc are the 
DW and its related inscribed cube volume, respectively. 

Moreover, κ is the weight factor for the volume of 
cuboid and the workspace volume. 

Solving this problem for κ =0.2 by GA leads to the 
data given in Table 6 and the workspace is illustrated in 
Figure 9. As it is seen, we can increase the volume of 
the inscribed cuboid with the cost of robot workspace 
volume. 
 

 

a. MIC in the related DW 

 
b. DW includes the MIC 

Figure 8: MIC in DW with A.R. 200 

 

Table 5: MIC and the design parameters with A.R. 200 

ra rb  d  Cube Volume 

(mm.Rad2) 

No. of 

Iteration 

200 453.527  90.401 83.6008  51 

 
For this design, the workspace and MIC volume versus 
lower bound of LCI and MSV are calculated and 
depicted in Figures 10 and 11, respectively. As the 
minimum permissible limit on singular values is 
increased, the DW and MIC continues to be reduced. 
Moreover, as the minimum permissible limit on LCI is 
increased, the workspace and MIC continues to be 
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reduced, as well. 
 

 

a. MIC in the related DW 

 

b. Dexterous workspace 

Figure 9: Workspace and its related MIC for k=200. 

Table 6: DW and its related MIC and design parameters. 

ra rbd Obj. F. DW Vol. MIC Vol. A.R. No. of 
Iteration 

202.193324.221 80.311 0.9532 339.877182.6599 172.682 75  

 

Figure 10: DW volume versus design constraints. 

6. Conclusion 

In this paper the workspace optimization of Tricept was 
performed. This parallel manipulator has a complex 
degree of freedom, therefore has leaded to dimensional 
in-homogeneous Jacobian matrices. Here, we divided 

some entries of the Jacobian by units of length, thereby 
producing a new Jacobians that is dimensionally 
homogeneous. By multiplying the associated entries of 
the twist array to the same factor, we made this  

Figure 11: MIC volume versus design constraints. 

array homogeneous as well. For the platform, the 
workspace was parameterized using some design 
parameters. Then, using GA method, the workspace 
was optimized subjects to some geometric constraints. 
Moreover, LCI and MSV were calculated for the 
workspace of the manipulator. Finally, we used the 
concept of effective inscribed cuboid workspace, which 
reflected requirements on the workspace shape, volume 
and quality, simultaneously. It was shown that by 
introducing the LCI and MSV as the quality measures 
throughout the workspace, the performance of the  
manipulator was improved at the cost of workspace 
reduction. 
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