
International Journal of Robotics, Vol.4, No.1, (2015) E. Kouchaki et al. 

1 

 
Model Predictive Control and Stability Analysis 

of a Standing Biped with Toe-Joint 
 

E. Kouchakia* and M. J. Sadighb 
a Department of Mechanical Engineering, Lenjan branch, Islamic Azad University, Isfahan, Iran, P. O. Box, 84741-68333

 

b Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran, P. O. Box , 84156-83111 
 

A R T I C L E   I N F O  A B S T R A C T 
Keywords: 

Model predictive control 

Toe-joint 
Standing balance control 

Lyapunov exponents 

 

 

In this paper standing balance control of a biped with toe-joint is presented. The 

model consists of an inverted pendulum as the upper body and the foot contains toe-

joint. The biped is actuated by two torques at ankle-joint and toe-joint to regulate the 

upper body in upright position. To model the interaction between foot and the 

ground, configuration constraints are defined and utilized. To stabilize the biped 

around upright position, model predictive control (MPC) is implemented by which 

the constraints can be incorporate to the optimal control algorithm properly. To 

assess stability of system and to find domain of attraction of the fixed point, concept 

of Lyapunov exponents is utilized. Using the proposed control and stability analysis, 

we studied the effect of toe-joint in improving the stability of the biped and in 

decreasing actuator demand, necessary for stabilizing the system. In addition, effect 

of toe-joint is studied in improving domain of attraction of the stabilized fixed pint. 

 

1. Introduction  

Standing balance maintenance against unexpected 

external forces is one of the key requirements of bipedal 

robots operating in human environments. According to 

Investigations [1] one or a combination of two strategies 

namely ankle strategy and hip strategy are used by 

standing subjects (humans or bipeds) to keep their 

posture against disturbances. In the ankle strategy, the 

subject fixes all joints except the ankle and balances 

itself like a single inverted pendulum. Hip strategy on 

the other hand is characterized by a bending at the hip 

joint, which is used for large disturbances. Several 

control approaches based on aforementioned strategies 

have been developed such as optimal control [2], [3], 

ground reaction force feedback control [4], integral 

control [5], sensory adaption [6], biomechanically 

motivated strategy [7] and switching control based on 

foot-ground constraints [8]. 

 
* Corresponding author, Tel.: +98 3152437001 

In the balanced standing state, the upper body situated 

in its upright position and the feet lie on the ground 

stationary. An important issue in this situation is the 

interaction between feet and the ground. During 

standing, the feet must be considered stationary but not 

fixed to the ground. That means there are constraints 

between the feet and the ground, which are essential and 

need to be satisfied for balanced standing. 

One might define two different kinds of constraints 

between foot and the ground. We term them as forcing 

constraints and configuration constraints. Forcing 

constraints are those that apply some conditions on the 

ground reaction forces and center of pressure to prevent 

the foot from lifting, slipping and rolling over. These 

kinds of constraints have been studied for simple 

standing bipedal models [9], [10] and a control algorithm 

has been implemented based on them [8]. Configuration 

constraints on the other hand apply conditions directly 

on the location of foot points to remain in contact with 

the ground during upper body regulation. These kinds of 
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constraints are applicable to the configuration equations 

of foot and have not been addressed in the literature. In 

this paper we implement configuration constraints to our 

model to keep foot in contact with the ground during 

balance regulation.  

All the previous work about bipedal standing balance 

control have used models with flat feet. A main 

limitation of them is the absence of toe-joints in their feet 

models. To the best of our knowledge, there is no work 

in literature dealing with the balance control of bipeds 

which contain toe-joints. Future bipedal robots are 

expected to be physically more interactive with their 

surroundings. Among this toe-joint plays a significant 

role to achieve more natural movements. It has been 

demonstrated that toe-joint led to higher stability [11], 

faster and smoother walking [12], better distribution of 

ground reaction forces [13] and lower energy 

consumption [14], [15]. 

In this paper we aim to present an optimal control 

algorithm for standing balance regulation of a bipedal 

model having toe-joint. The stabilization is done based 

on assumption of external disturbances to be small. 

Accordingly, a simple bipedal model contains an 

inverted pendulum as the upper body and a foot with toe-

joint is presented. To solve for stable configuration, one 

has to find fixed points of equations of motion which in 

case of foot with toe-joint leads to a set of undetermined 

equations. To overcome this problem, the interaction 

with the ground is supposed to be elastic. Controller for 

the system is designed using model predictive control 

(MPC) which provides an effective tool to handle 

constraints online in the optimal control algorithm. To 

evaluate the present model and investigate the effect of 

toe-joint, the results are compared with those of flat foot 

model without toe-joint in literature [8]. 

Although it is well known that such designed control 

makes the linearized model globally asymptotically 

stable, this will not be the case for the real nonlinear 

system. To assess stability of the nonlinear system 

around its fixed point to find domain of attraction of the 

fixed point, we used concept of Lyapunov exponents. 

This paper consists of six sections. Equations of 

motion and constraints are presented in second section. 

The third section describes MPC formulation for control 

strategy. Stability analysis for nonlinear system is 

described in fourth section. The simulation results are 

given in fifth section followed by conclusions in the last 

section. 

2. Modeling, equations of motion and constraints  

The bipedal model consists of an inverted pendulum 

represents the upper body and a foot which is composed 

of a heel-link and a toe-link. The biped is assumed 

laterally symmetric and moves in a sagittal plane. The 

model with its geometrical details is shown in figure 1. 

In the figure, 𝐿𝑡 and 𝐿𝑎 are toe length and heel length 

respectively. 𝐿𝑎 and ℎ𝑎 are horizontal and vertical 

distance between toe-joint and ankle. r is distance 

between the center of mass of the upper body and the 

ankle and L is the total length of pendulum. 

 

 
Figure 1. The biped model containing a toe-joint and an 

inverted pendulum as the upper body 

Inverted pendulum models have often been used to 

study the bipedal posture. It has been reported in 

literature that when standing human subjects are 

perturbed by small disturbances in the sagittal plane 

from their upright position, they tend to keep the knees, 

hips and necks straight and moving about the ankle to 

keep balance (the ankle strategy) [1]. In this paper, small 

disturbances are considered. Thus, it is reasonable to 

simplify the upper body as an inverted pendulum. 

In the balancing state both heel and toe lie on the 

ground stationary. The resultant ground reaction force in 

this situation contains two forces acting on heel and toe. 

Evaluation of these forces and their lines of action leads 

to statically undetermined equations. To deal with this 

problem the contact between the foot and the ground is 

considered elastic in this paper. By this, the pressure 

distribution under heel and toe will get a linear form. 

Figure 2 shows this elastic contact model and the 

consequent linear pressure distribution. 

 
Figure 2. The elastic contact model and linear ground force 

distribution 

By using the elastic contact model between the biped 

and the ground, the system will get four degrees of 
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freedom. In figure 3, the degrees of freedom and the 

applied joint torques are shown. 

 

 
Figure 3. Degrees of freedom and the applied joint torques 

In figure 3 𝜏𝑎 and 𝜏𝑡 are the ankle torque and the toe-

joint torque, respectively. 𝑌𝑡, 𝑌ℎ and 𝑌𝑒 are respectively 

the location of toe-joint, heel’s end and tip of the toe 

from level ground (free length of the elastic support). 𝑞0 

is the angle of the toe-link with respect to the horizontal 

line (axes X) in the clockwise direction, 𝑞𝑡 is the angle 

between the toe-link and the heel and 𝑞𝑎 is the angle 

between the heel and the upper body. 𝜃1, 𝜃2 and 𝜃3 are 

respectively the absolute angles of the toe-link, the heel 

and the pendulum measured from the X axes in the 

positive trigonometrical direction. 

The generalized coordinate of the system and the input 

torques are defined as follows: 

𝐪 = [𝑌𝑡 𝑞0 𝑞𝑡 𝑞𝑎]𝑇 (1)  

𝐮 = [𝜏𝑡 𝜏𝑎]𝑇 (2)  

The relations between the absolute and relative angles 

are: 

𝜃1 = −𝑞0                        
𝜃2 = 𝜋 − 𝑞0 − 𝑞𝑡           

𝜃3 =
𝜋

2
− 𝑞0 − 𝑞𝑡 + 𝑞𝑎

 (3)  

The potential energy due to deformation of the elastic 

support is obtained from: 

Ps =
1

2
ks ∫ (Yt − x sin θ2)2dx

0

−Lh
+

1

2
ks ∫ (Yt + x sin θ1)2dx

Lt

0
  

(4)  

where x is the path parameter from toe-joint along heel 

and toe-link and 𝑘𝑠 is the stiffness coefficient of the 

elastic support per length. The consumed power due to 

damping effects can be written as follows: 

Pd = −
1

2
kd ∫ (

d

dt
[Yt − x sin θ2])

2

dx
0

−Lh
−

1

2
kd ∫ (

d

dt
[Yt + x sin θ1])

2

dx
Lt

0
  

(5)  

in which 𝑘𝑑 is the damping coefficient per length. The 

gravitational potential energy of the biped is obtained 

from: 

Pg = ∑(miygi)g

3

i=1

 (6)  

where g is the gravitational constant, 𝑚𝑖 is mass and 𝑦𝑔𝑖  

is the vertical position of mass center of each link. The 

kinetic energy of the biped is: 

𝐾𝐸 = ∑ (
1

2
𝑚𝑖𝑟̇𝑖

2 +
1

2
𝐼𝑖𝜃̇𝑖

2)

3

𝑖=1

 (7)  

where 𝑟̇𝑖 is the linear velocity of center of mass, 𝜃̇𝑖 is the 

angular velocity and 𝐼𝑖  is the mass moment of inertia of 

ith link. To obtain the equations of motion the terms of 

Eqs. 4-7 should be substituted in Lagrange equation: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇
) −

𝜕𝐿

𝜕𝑞
= 𝐷𝑢 +

𝜕𝑃𝑑

𝜕𝑞̇
 (8)  

in which L is the Lagrangian and 𝐷4×2 is the Jacobian 

matrix: 

𝐿 = 𝐾 − 𝑃𝑔 − 𝑃𝑠,          𝐷 = [

0 0
0 0
1 0
0 1

] (9)  

The equations of motion were extracted using MATLAB 

and can be written in the following standard form: 

M(q)q̈ + h(q, q̇) = Du (10)  

where M4×4 is the inertial matrix, h4×1 is the centripetal, 

Coriolis and gravitational vector. 

In this paper, the configuration constraints are used to 

model the interaction between the foot and the ground. 

Therefore, the foot should keep its contact with the 

ground during regulation. Since the foot consists of two 

rigid links, its overall position is defined by the location 

of end points i.e. as long as the end points of toe-link and 

heel (with position 𝑌𝑡, 𝑌ℎ and 𝑌𝑒 in Fig. 3) don’t rise from 

the ground one can say the whole foot remains in contact 

with the ground. Accordingly, the configuration 

constraints can be expressed in terms of these points as: 

{

𝑌𝑡 ≤ 0
𝑌ℎ ≤ 0
𝑌𝑒 ≤ 0

 (11)  

In Eq. 11, Yt is one of the system’s degrees of freedom. 

By rewriting 𝑌ℎ and 𝑌𝑒 as functions of other degrees of 

freedom using figure 3 and Eq. 3, Eq. 11 becomes: 

{

𝑌𝑡 ≤ 0                                  

𝑌𝑡 + 𝐿ℎ 𝑠𝑖𝑛(𝑞0 + 𝑞𝑡) ≤ 0
𝑌𝑡 − 𝐿𝑡 𝑠𝑖𝑛 𝑞0 ≤ 0             

 (12)  

3. Standing balance control 

The standing balance control is carried out using an 

optimal control rule based on model predictive control 
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(MPC). Model predictive control is an effective strategy 

in which the constraints can be implemented online 

during the optimal control. The controller is designed 

based on the equations of linearized model around the 

equilibrium point. Since the stabilization against small 

disturbances with consequently small motions around 

the equilibrium configuration is studied in this paper, it 

is expected that the controller has a good performance. 

The design of controller is presented in this section. 

3.1. Model predictive control 

Model predictive control (MPC) is an optimal control 

strategy based on the numerical optimization [16]. 

Future control inputs and future plant responses are 

predicted using a system model and optimized at regular 

intervals with respect to a performance index. Since 

MPC generally is implemented to the discrete form of 

motion equations, the discretization is done using zero-

order hold method. The equations are: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) (13)  

where A and B are state space matrices in discrete 

forms. x(k) and u(k) are the model state and input vectors 

at the kth sampling instant. Given a predicted input 

sequence, the corresponding sequence of state 

predictions is generated by simulating the model forward 

over the prediction horizon, of say N sampling intervals. 

These predicted sequences are stacked into following 

vectors: 

𝑈(𝑘) = [

𝑢(𝑘|𝑘)

𝑢(𝑘 + 1|𝑘)
⋮

𝑢(𝑘 + 𝑁 − 1|𝑘)

],   

𝑋(𝑘) = [

𝑥(𝑘 + 1|𝑘)
𝑥(𝑘 + 2|𝑘)

⋮
𝑥(𝑘 + 𝑁|𝑘)

]  

(14)  

Here u(k +i|k) and x(k +i|k) denote input and state 

vectors at time k +i that are predicted at time k. The 

predictive control feedback law is computed by 

minimizing a predicted performance cost, which is 

defined in terms of the predicted sequences U and X. and 

has the below quadratic form: 

𝐽(𝑘) = ∑ [𝑥𝑇(𝑘 + 𝑖|𝑘)𝑄𝑥(𝑘 + 𝑖|𝑘) +𝑁
𝑖=0

𝑢𝑇(𝑘 + 𝑖|𝑘)𝑅𝑢(𝑘 + 𝑖|𝑘)]  
(15)  

where Q and R are positive definite matrices (Q may be 

positive semi-definite). Clearly J(k) is a function of U(k) 

and the optimal input sequence for the problem of 

minimizing J(k) is denoted U*(k): 

U∗(k) = arg min
U

j(k) (16)  

Only the first element of the optimal predicted input 

sequence U*(k) is input to the plant: 

𝑢(𝑘) = 𝑢∗(𝑘|𝑘) (17)  

The process of computing U*(k) by minimizing the 

predicted cost and implementing the first element of U* 

is then repeated at each sampling instant. 

The preciseness of optimization depends on the length 

of prediction horizon N. The exact optimization occurs 

when J(k) is calculated in infinite horizon. Alternatively 

one can determine J(k) in a finite horizon by adding a 

terminal term to compensate the produced error. By 

doing this and using Eq. 14, index J(k) gets the following 

form: 

J(𝑘) = UT(𝑘)HU(𝑘) + 2𝑥T(𝑘)PTU(𝑘)

+ 𝑥T(𝑘)G𝑥(𝑘) 
(18)  

where; 

H = CTQ̃C + R̃, P = CTQ̃M,      G
= MTQ̃M + Q,      M
= [A A2 … AN]T 

C = [

B         0
AB         B

… 0
… 0

⋮   ⋮
AN−1B AN−2B

⋱ ⋮
… B

],     Q̃

= [

Q 0
0 Q

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… Q̅

],     R̃

= [

R 0
0 R

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… R

] 

Q̅8×8 is the solution of Lyapunov equation. The 

minimization of J(k) can be derived by letting gradient 

of J with respect to U to be zero: 

∇UJ = 2HU + 2P𝑥 (19)  

which leads to the below feedback law: 

U∗(𝑘) = −K𝑥(𝑘) (20)  

where K = H−1P is the feedback gain matrix. 

3.2. Incorporating constraints 

To put the constraints into effect they should be 

applied to the optimization problem in each time step. To 

this end it is necessary first to write Eq. 12 in an 

appropriate matrix form in terms of states vector: 

𝑚1𝑥(𝑘) + 𝐿ℎ 𝑠𝑖𝑛(𝑚2𝑥(𝑘))
− 𝐿𝑡 𝑠𝑖𝑛(𝑚3𝑥(𝑘)) ≤ 0 

(21)  

in which m1, m2 and m3 are following 8 × 8 matrices; 

𝑚1 = [

1      0      
1      0      

0       01×5

0       01×5

1     0      
05×1 05×1

0      01×5

05×1 05×5

] 
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 𝑚2 = [

0      0      
0      1      

0       01×5

1       01×5

0     0      
05×1 05×1

0      01×5

05×1 05×5

] 

 𝑚3 = [

0      0      
0      0      

0       01×5

0       01×5

0     1      
05×1 05×1

0      01×5

05×1 05×5

] 

By writing Eq. 21 in terms of predicted vector X(k) it 

gets the following form in the prediction space: 

M1X(𝑘) + 𝐿ℎ sin(M2X(𝑘))
− 𝐿𝑡 sin(M3X(𝑘)) ≤ 0 

(22)  

where M1, M2 and M3 are 8N × 8N in which matrices m1, 

m2 and m3 are placed in their main diagonal N times 

respectively. The rest elements are zero. The 

minimization of J(k) with respect to constraints of Eq. 22 

is a nonlinear programming problem because the 

constraints are nonlinear functions of predicted states 

vectors. 

4. Stability analysis 

In this section, stability of the system is investigated 

and the stability region is calculated in the phase plan 

using concept of Lyapunov exponents. Lyapunov’s 

stability is an effective tool, which is widely used for 

stability analysis of nonlinear systems, but in almost all 

cases, it is difficult to derive a Lyapunov function for 

highly nonlinear systems. Alternatively, Lyapunov 

exponents that are defined as the average exponential 

rates of divergence or convergence of nearby orbits in 

the state space [17], can characterize the system stability. 

The concept of Lyapunov exponents was employed for 

stability analysis of a flat foot biped before [8], [18]. In 

this section, the stability analysis of the current model is 

done using this concept. 

Given the system’s equations of motion in the 

following form with initial conditions: 

𝐱̇ = 𝐟(𝐱, 𝐮),        𝐱(𝟎) = 𝐱𝟎 (23)  

When monitoring the long-term evolution of an 

infinitesimal n-sphere (n = 8) of initial conditions, the 

sphere will become an n-ellipsoid ball. The ith one-

dimensional Lyapunov exponent is then defined in terms 

of the length of the ellipsoidal principal axis‖𝛿𝐱𝑖(𝑡)‖: 

𝜆𝑖 = 𝑙𝑖𝑚
𝑡→∞

1

𝑡
𝑙𝑛

‖𝜹𝐱𝒊(𝑡)‖

‖𝜹𝐱𝒊(𝑡0)‖
           (24)  

where 𝜆𝑖  are ordered from largest to smallest. ‖𝛿𝐱𝑖(𝑡)‖ 

and ‖𝛿𝐱𝑖(𝑡0)‖denote the lengths of the ith principal axis 

of the infinitesimal 8-dimensional hyper-ellipsoid at 

final and initial times t and t0 respectively. The above 

definition of Lyapunov exponents indicate that 

Lyapunov exponents have a negative sign for stable 

systems and positive Lyapunov exponents represent the 

instability. 

Since the ball of states establishes on a point of 

trajectory x with a small radius in each instance, the 

linearized model of Eq. 23 around each point of x is used 

for calculation of their evolution. By linearization 

around trajectory x the equations will get the following 

form: 

δ𝐱̇ =
∂𝐟(𝐱, 𝐮)

∂𝐱
δ𝐱 +

∂𝐟(𝐱, 𝐮)

∂𝐮
δ𝐮 (25)  

By considering the states as direction axis, ∂𝐱 in the 

above equation is a matrix containing principal axis of 

the ball: 

𝜹𝒙8×8 = [𝜹𝒙𝟏 𝜹𝒙𝟐 …  𝜹𝒙8] (26)  

Solving Eq. 25 with initial condition δ𝐱(0), the principal 

axis of ball will be obtained in each time step. The center 

of ball on the other hand moves on the trajectory x(t) 

generated by solving Eq. 23. Accordingly to assess the 

evolution of the ball, solving of Eqs. 23 and 25 is 

required simultaneously. This leads to the following set 

of equations: 

[
𝐱̇

δ𝐱̇
] = [

𝐟(𝐱, 𝐮)

∂𝐟(𝐱, 𝐮)

∂𝐱
δ𝐱 +

∂𝐟(𝐱, 𝐮)

∂𝐮
δ𝐮

],  

[
𝐱(0) 

δ𝐱(0) 
] = [

𝐱𝟎

𝐈8×8
] 

(27)  

where 𝐈8×8 is the identity matrix. By solving the above 

equations, the evolution of n-sphere spanned by δ𝐱 is 

calculated. In order to avoid a misalignment of all the 

vectors along the direction of maximal expansion, Gram 

Schmidt reorthonormalization (GSR) is applied. GSR 

provides the following orthonormal set: 

𝒖1 =
𝒗1

‖𝒗1‖
,  

𝒖2 =
𝒗2

‖𝒗2‖
  

 ⋮ 

𝒖8 =
𝒗8

‖𝒗8‖
 

(28)  

in which 𝒗1, 𝒗2, … 𝒗8 are defined as follows: 

𝒗1 =  𝜹𝒙1 

𝒗2 =  𝜹𝒙2 −  (𝜹𝒙2. 𝒖1)𝒖1 

⋮ 
𝒗8 =  𝜹𝒙8 −  (𝜹𝒙8. 𝒖1)𝒖1 … 

−  (𝜹𝒙8. 𝒖7)𝒖7 

(29)  

where <. > signifies the inner product. By solving the 

equations and using GSR procedure until K time step and 

step size T, the 8 Lyapunov exponents can be calculated 

from the below equation: 

𝜆𝑖 =
1

𝐾
∑ 𝑙𝑛‖𝒗𝑖(𝑘)‖

𝐾

𝑘=1

     (𝑖 = 1, … ,8) (30)  
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5. Simulation results 

In this section, simulation results are provided using 

numerical parameters. To be able to compare the results, 

the numerical values of the physical parameters are 

adopted from literature [9] with additional parameters 

for the toe-link, as given in Table 1. 

 
Table 1. Physical parameters used in the numerical simulation 

Body height H = 1.78 m 

Body mass mass = 80 kg 

Heel mass mh =  1.46 kg 

Toe mass mt = 0.86 kg 

Pendulum mass m = 77.68 kg 

Ankle-to-center of mass r = 0.575× H = 1.02 m 

Toe length Lt = 0.0608×H = 0.11 m 

Heel length Lh = Lf - Lt = 0.169 m 

Horizontal ankle location La = Lh - 0.19×Lf = 0.12 m 

Ankle height ha = 0.039× H = 0.07 m 

Spring stiffness per length ks=2.9×106 N/m2 

Damping coefficient per 

length 
kd=3×104 Ns/m2 

First, the equations of motion are linearized around the 

equilibrium points. The equilibrium points are calculated 

by letting the derivatives of the degrees of freedom be 

equal to zero in Eq. (10). Doing this the equilibrium 

points are obtained as a function of the applied torques: 

𝑞𝑖𝑒 = 𝑓𝑖(𝜏𝑡̅ , 𝜏𝑎̅)                 𝑖 = 1,2,3,4 (31)  

where 𝜏𝑡̅ and 𝜏𝑎̅ are the static torques of toe-joint and 

ankle-joint in the equilibrium state. By solving the 

equations, several equilibrium points are obtained for 

each set of 𝜏𝑡̅ and 𝜏𝑎̅. Among them, we choose one that 

gives biped the standing physical configuration in which 

the whole foot remains in contact with the ground and 

the upper body is upright. In this state static torques are 

zero (𝜏𝑡̅ = 0, 𝜏𝑎̅ = 0). The equilibrium position is 

calculated as (Yte = −0:011mm;q0e = 0:13o; qte = −1:23o; 

qae = −1:13o) which means that the upper body is upright 

(𝜃3𝑒 = 90𝑜) and the whole foot is in contact with the 

ground. 

The simulation of standing balance control for 

numerical values of table 1 was done. The results are 

shown in figures. 4-7 for primary five seconds in 

response to an initial angular velocity applied from back 

to the upper body (𝑞̇𝑎|𝑡=0 = −0.6 𝑟𝑎𝑑/𝑠𝑒𝑐). All other 

states are at their equilibrium values at the beginning. 

Figure 4 shows the variation of states around the 

equilibrium point. The horizontal axis is simulation time 

and the vertical axis is the toe-joint displacement in the 

first plot and the angular displacements of other degrees 

of freedom in the three rest plots. From figure 4 one can 

see that the controller works properly and biped is 

stabilized to its equilibrium situation within 3 seconds. 

 
Figure 4. Simulated displacements in response to the initial 

angular velocity (𝑞̇𝑎|𝑡=0 = −0.6 𝑟𝑎𝑑/𝑠𝑒𝑐) 

Figure 5 shows simulated vertical displacements of 

end points of foot links namely toe-joint, heel end and 

tip of the toe. As shown in the figure the curves go to the 

equilibrium status within 3 seconds. Note that the 

saturated parts of plots that appear as cut curves in the 

zero position of vertical axis (ground level) in some 

instants of simulation time are due to the implementation 

of configuration constraints that restrict the biped to keep 

the whole foot in contact with the ground during 

regulation 

 
Figure 5. Displacement of foot points:𝑌𝑡: toe-joint, 𝑌ℎ: heel 

end, 𝑌𝑒: toe end 

Figure 6 shows the history of torques applied from 

controller within simulation time. The dash curve is 

ankle’s torque and the dash-dot one is toe-joint’s torque. 

The solid line is control torque of previous work [8], 

which is added for comparison. In that work a flat foot 

biped without toe-joint and with the same physical 
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parameters was studied and the standing balance control 

was done using a state-switching PD controller. Note 

that the initial conditions of two models are same. As it 

seen, the control torque applied by ankle’s actuator has 

been reduced significantly due to contribution of toe-

joint. Furthermore, figure shows that the total amount of 

control torques of the present model is lower than that of 

toe-less model. 

 
Figure 6. Simulated control torques: the flat foot model [8]:-

,𝜏𝑡: -., 𝜏𝑎: - - 

In Figure. 7 the variation of the upper body angular 

displacement with respect to vertical line is shown. The 

dash curve is for the present model and the solid one is 

for the flat foot model [8]. The figure shows that both 

controllers stabilize the biped within 3 seconds. 

However, the present control system has a better 

performance. 

Eight Lyapunov exponents for the control system 

were calculated. It was observed that for the system after 

50 seconds all Lyapunov exponents converge to certain 

values. In Fig. 8 Lyapunov exponents are shown with 

respect to time for 100 seconds with the converged 

values mentioned in the caption. All Lyapunov 

exponents converged to negative values so the control 

system is stable for that initial conditions. 

Since Lyapunov exponents remain negative values 

within the stability region, the determination of the 

stability region becomes an important part of the stability 

analysis. Since the angular displacement and velocity of 

the upper body are key states, and the purpose of control 

was the regulation of upper body to the upright position 

the calculation of stability region was done in the phase 

plane (𝑞𝑎, 𝑞̇𝑎) To determine the stability region, 

Lyapunov exponents were determined by taking 

neighborhood points of the origin in the phase plane as 

initial conditions. The stability region is the area in the 

phase plane in which the taken initial conditions lead to 

converged Lyapunov exponents. Figure 9 shows the 

resultant stability region in light gray. The horizontal 

axis is angular displacement of the upper body and the 

vertical axis is its angular velocity. The stability region 

of the flat feet model without toe-joints calculated in the 

previous work [9] is added in dark gray for comparison. 

The figure shows that the present model gives a wider 

stability region 

 
Figure 7. Simulated variation of upper body angular 

displacement: the present model: - -, the flat foot model [8]: - 

 
Figure 8. Lyapunov exponents of the control system 

converged to: LE1 = -13:78;LE2 = -13:79;LE3 = -14:05;LE4 = 

-15:44;LE5 = -18:08;LE6 = -18:615;LE7 = -18:8;LE8 = -19:19 

6. Conclusions 

In this paper, standing balance control for a biped with 

toe-joint was presented. The bipedal model contained an 

inverted pendulum as the upper body and a toe-joint in 

its foot. The biped was actuated in both ankle and toe-

joints. Configuration constraints between foot and 

ground were defined to keep the foot in contact with the 

ground during balance regulation. The regulation of 

upper body around upright position was done using 

model predictive control. The stability of system was 

analyzed using concept of Lyapunov exponents.  

The main contribution of this work is modeling the 

toe-joint in standing balance control and applying 
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configuration constraints during regulation, which have 

not been addressed so far. Simulation results showed that 

the designed controller could stabilize the biped 

properly. Compared with the flat foot bipedal model 

studied in the literature, the present model with toe-joint 

showed a better performance and the controller 

demanded lower control torques for regulation. 

Furthermore, the stability region of this model was 

greater than those of toe-less model.  

 
Figure 9. Stability region determined by Lyapunov exponents: 

present model: gray region, toe-less model [9]: black region 
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