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A new framework of synchronized adaptive fuzzy sliding mode control (AFSMC) 
approach for a network of under-actuated systems (UASs) under communication 
time delay is presented here. The basic equations of motion of each agent for 
controller design and information exchange paradigm among them are considered 
as cascaded normal form and master/slave, respectively. A fuzzy system is applied 
to determine the equivalent part of the controller which is based on classical sliding 
mode control (SMC). Then, its robust part is improved in comparison with the 
conventional AFSMC so as to synchronize the agents to the leader’s state. In 
addition to synchronization, the proposed AFSMC improves some properties 
associated with the transient part of the response, especially rise-time, significantly. 
The proposed scheme is robust against uncertainties and unknown communication 
time delay, as well. Also, its implementation is so simple that different UASs can 
be replaced, easily. Moreover, the presented controller is completely model-free for 
UASs with strict feedback form dynamics and less-dependent on the dynamics of 
UASs with cascaded normal form. 
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1. Introduction  

Under-actuated systems (UASs) are a kind of 
mechanical systems which have fewer control input in 
comparison with the system’s configuration variables. 
This makes their control a challenging problem. 
However, they have received considerable attentions 
due to their wide applications in aerospace (satellites, 
vertical take-off and landing (VTOL) aircrafts, multi-
rotor unmanned aerial vehicles (UAVs), helicopters), 
robotics (robots with flexible links, mobile robots, 
snake-type, and swimming robots), surface vessels, and 
underwater vehicles [2]. On the other hand, when they 
come to collaboration in collective motions other issues 

such as communication time delay is added to the 
underactuation problem. 

Despite the aforementioned difficulty in control of 
UASs, extensive efforts have been made by researchers 
to overcome their control challenge. Of most important 
works in this field, [3] and [4] can be noted. In [3], a 
method is proposed by which the equations of motion 
are partially linearized. However, the control input 
appears in both equations corresponding to actuated 
and unactuated configuration variables. Olfati-Saber in 
[4], presented a classification of UASs in general form. 
He also presented a systematic approach by which the 
equations of motion of UASs can be written as a 
cascaded normal form. The appearance problem of 
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control input in both actuated and unactuated related 
equations vanishes by this form. In addition, dealing 
with cascaded normal forms facilitate control synthesis, 
considerably. 

On the other hand, synchronization of the systems 
especially chaotic or more generally fractional-order 
chaotic systems have been widely studied, recently [5-
7]. In [5], Davy and Jiang presented an adaptive back-
stepping controller based on Lyapunov theory to 
achieve chaos synchronization of two gyros in which 
both of them contain chaotic and nonlinear behavior 
and have some uncertainties. In [6], Sachin and Varsha  
addressed an active control technique to synchronize 
various fractional order chaotic dynamical systems. In 
[7], Ahmad-Taher mentioned synchronization of 
similar chaotic systems using sliding mode control in 
hybrid phase. Synchronization control is employed in 
many applications such as: cooperative robot 
manipulators [8], autonomous underwater vehicle [9], 
motion tracking control of numerous underactuated 
ships [10], formation control of under-actuated 
autonomous surface vehicles [11]. Some other recent 
studies on synchronization of multi agent systems 
(MASs) can be found in [12-14]. 

The AFSMC approach which is synthesized by 
integration of SMC method and fuzzy logic based 
controllers (FLC), has attracted a lot of interests during 
the last two decades. Each of these two methods has its 
own unique pros and cons. The SMC is extensively 
used for robust control of nonlinear systems which 
have uncertainties and external disturbances. However, 
it has some disadvantages; like the chattering problem 
which leads to undesirable behavior in steady-state part 
of system’s response. On the other hand, the FLC could 
be used for control of the systems for which there is not 
complete information about the process or dynamic 
model. Lack of a systematic approach to design a 
stabilizing controller and difficulty in adjusting 
parameters are two challenges related to FLC. In order 
to take advantage of the benefits of both techniques and 
overcome their problems, some hybrid methods such as 
AFSMC are proposed and widely studied [15-22]. 

The AFSMC has also been applied to 
synchronization of chaotic systems, e.g. [23] and [24]. 
In [23] the AFSMC scheme is established in order to 
synchronize fractional-order chaotic systems. In [24] 
the method is extended for uncertain fractional-order 
chaotic systems qwwith intrinsic time delay. Recently, 
another branch of AFSMC approach which utilizes 
type-2 fuzzy membership functions (MFs) has been 
used for better handling the uncertainties [25, 26]. 
Mohammadzadeh et al. established self-structuring 
hierarchical to synchronize fractional order chaotic 
systems [25], and self-evolving nonsingleton type-2 
fuzzy neural networks [26]. Several other papers can be 
cited in this regard [27-29]. 

The cooperation paradigm in the published literature 
on synchronization of uncertain systems by AFSMC is 
considered as the master/slave with one agent as the 
master and one agent as the slave. However, the 
communication topology has not been included in the 
controller design procedure. In other words, the 
AFSMC method has not been extended for 
synchronization of multi-agent (more than 2 agents) 
systems with master/slave paradigm so far. 
Furthermore, the communication time delay in 
transmitting output signal among the agents has been 
neglected in [23-29]. Hence, the main contribution of 
this paper is the improvement of the AFSMC method 
for synchronization of networked multi-agent UASs 
subjected to communication delay. The equivalent part 
of the controller is estimated by using universal 
approximation capability of fuzzy systems and the 
robust part is modified such that the proposed 
controller has the following features: 

1. The communication topology and time delay has 
been considered during control synthesis. 

2. The synthesized controller improves some 
properties associated with the transient part of the 
response, especially rise-time, in comparison with 
the conventional AFSMC.  

The organization of the subsequent sections in this 
paper is as follows: Section 2 summarizes the equations 
of motion of UASs in the original and cascaded normal 
forms. In section 3 the proposed AFSMC method for 
synchronization of networked UASs under 
communication time delay and leader/follower 
cooperation paradigm is synthesized and followed by a 
theorem. The results of implementation of the proposed 
controller on two UASs, i.e. rotating inverted pendulum 
and quadrotor are presented in section 4. Section 5 
concludes the paper. 

2. Under-actuated Systems Dynamics  

Consider the following equations of motion for a class 
of UASs with two configuration variables and one 
independent control input: 

11 1 12 2 1

21 1 22 2 2

( ) ( ) ( , ) 0

( ) ( ) ( , )

m q q m q q h q q

m q q m q q h q q 
  
  

  
  

  (1) 

Here 1 2[ , ],q q q q   are the vector of system states,  is 

the control input and ih  includes Coriolis, centrifugal 

force, and gravity related terms. A systematic approach 
for transformation of the original equations into a 
cascaded normal form is presented in [4]: 
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Where ( 1, 2,3, 4)n
ix R i  is the system’s state variable 

in the cascaded normal form, nu R is the control input, 
4 4

1 2, : , :n n n n nf f R R g R R   are linear smooth vector 

functions. Furthermore g is invertible and 

( 1, 2,3)n
id R i  represents the disturbances. The 

equations of motion of most UASs can be rewritten in 
the cascaded forms. Inverted pendulum system, VTOL 
aircrafts, and quadrotors are examples of such UASs. 

We rewrite the equations of motion for a network of N 
under-actuated agents, locally: 

1 2

2 1 1

3 4

4 2 1 2

i i

i i i

i i

i i i i i

x x

x f d

x x

x f g u d



 


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




  (3) 

where 1, 2, ...,i N  In the global form we have: 

1 2

2 1 1

3 4

4 2 1 2

x x

x f d

x x

x f g u d



 


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 (4) 

where
1 2[ , ,..., ], 1, 2,3, 4j j j j

Nx x x x j  ,

1 2[ , ,..., ] , 1, 2k k k i T
Nf f f f k   , 

1 2[ , ,..., ]T
Nu u u u , and

1 1 1 1
1 2( , ,..., )Ng dia g g g g . In this paper, the paradigm for 

exchange of information among agents in the 
networked system is considered as leader/follower or 
master/slave. The communication topology is also 
considered as fixed and its associated graph, G , as a 
weakly connected digraph with spanning tree. The 
communication links is also subjected to unknown 
communication time delay.  
Definition 1. The local neighbourhood synchronization 
errors up to 4th order for i th UAS are defined as 
follows: 
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where 0 ( )x t  is the state of the leader or control node 

which is also known as consensus value, 0ib  is 

pinning gain and at least for one agent is nonzero which 
indicates that that agent receives direct information 
from the leader. T is unknown communication time 

delay. ijA a    is adjacency matrix which its elements 

denote the edge weight in communication graph. In 
addition, 1

iJf  is the Jacobin of 1
if and is obtained as: 

1 1 1
1 2 1 4

1 2 3
i i i

i i i i
i i i

f f f
Jf x f x

x x x

  
  
  

 (6) 

Therefore, the synchronization problem is defined as: 
Design the distributed control protocols for all nodes 
such that the followers synchronize to the state of the 
leader, i.e. 0, ( ) ( )i ix t x t    . It is assumed that the 

dynamics of the leader for all nodes in G  is unknown. 
It is further assumed that the dynamics of each agent 
for its corresponding controller is unknown or at least a 
rough estimation of some parameters exist. 

3. Synchronization Control Strategy 

Robust control methods should be used to make 
significant progress in dealing with the uncertainty of 
the system. In this study, the AFSMC approach is opted 
to control the system. As mentioned above, the 
infrastructure of AFSMC is SMC method where fuzzy 
and adaptive laws are added to deal with unknown 
uncertainties. Therefore, the sliding surface is defined 
first [30]: 

1 2 3 4
1 2 3i i i i i i i is c e c e c e e      (7) 

According to Eq. (5), it can be concluded that 
1 2 2 3,i i i ie e e e     and 3 4

i ie e . Time derivative of Eq. (7) 

yields: 
2 3 4 4

1 2 3i i i i i i i is c e c e c e e       (8) 

Also, with respect to Eq. (6), one can write: 

 
Fig. 1. Communication topology. 
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As a result, s equals to: 
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To extract the equivalent part of the controller, eq
iu , s  is 

set to zero: 
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From Eqs. (10) and (11), s  can be rewritten: 
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1
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As can be seen from Eq. (11), eq
iu is complex and 

depends on the system dynamics, completely. As 
mentioned, since the agents are going to be unaware of 
their dynamics and the dynamics of the leader, the 
control input should be independent of the nodes 
dynamics, as much as possible. Therefore, The 
approximation theorem of fuzzy systems is utilized for 
approximating eq

iu . This approximation is indicated by 

,ˆi fuzzu . For this purpose, we use the fuzzy system of 

Takagi-Sugeno-Kung (TSK) type with input s and 
output. ,ˆi fuzzu . Therefore, the if -then rules of fuzzy 

systems are expressed as:  

Rule r: if is  is r
iA   then ,ˆ r

i fuzz iu   for 1,..., rr n  

Here, r
iA is MF of fuzzy system, which is defined as a 

Gaussian function: 
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r
i is a fuzzy singleton that is related to output of i th 

rule, ic and i  are the centre and variance of MFs, 

respectively. Using the singleton fuzzifier, product 
inference engine, and centre-average defuzzifier, the 
output of TSK system for i th agent is: 
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The above relation can be written as follows: 
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This approximation has an optimal value as *
,i fuzzu  : 

*
,
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i i fuzz iu u     (17) 

Here, i   is the minimum approximation error. 
Therefore, the applied iu  is considered as: 
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of i . Moreover rb
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input. The difference between estimated value of eq
iu  

and the optimal approximation value is shown with 
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So:  
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The robust part of controller, rb
iu  for i th follower agent 

is proposed as: 
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and for leader as: 
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It can be figured out from Eq. (21) that the controller’s 

dependence on the dynamics is
11
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i
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. On the other 

hand, as explained in [4], some of UASs such as 
Acrobat, inertia-wheel pendulum, TORA system, and 
rotating inverted pendulum belong to class-I of UASs 
which their equations of motion can be rewritten in the 
strict feedback form. In the strict feedback from, the 

term
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f
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
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 is equal to 1 and hence, the controller is 

independent of the dynamics, completely, whereas for 
other UASs such as quadrotor that cannot be simpler 
than the cascaded normal form, the controller has a 
little dependency on the system dynamics. With these 
explanations, now the first result in the synchronization 
of networked UASs is presented under communication 
delay and weakly connected spanning tree graph 
topology. 

Theorem 1. Distributed AFSMC protocols for 
synchronization of networked under-actuated agents 
under communication delay: Consider a network of 
UASs, which their equations are given by Eqs. (3) and 
(4). If the agents in the network exchange is  signals 

with an unknown time delay T over a weakly-
connected communication graph with spanning tree, 
with the controllers given in Eqs. (15), (21) and (22), as 
well as the adaptive rules presented in Eq. (23) for 
followers and Eq. (24) for the leader, the agents achieve 
synchronous motion and asymptotically converge to 
consensus value. 
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Proof. We first examine the stability of the followers 
with the given controller. Also, we will remove the 
superiors of the leader and the follower except where it 
leads to confusion. Let define 
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Differentiating the above equations with respect to time 
and substituting Eqs. (15), (20), and (21): 

   

 



1
1

3
1

1 1

( ) ( )

1
( ) ( ) ( ) ( )

2

i

i i

i

N
T Ti

t i ij i i i i i i i
i j N i

ij i i ij j i
j N j N

T T
i i i i i i

T T
ij i i i i

j N

f
V Z s a b g W c s

x

a b k a s t T s t

F

a s t s t s t T s t T



   

 

 

 



          
  

       
  

  

    


 

 





    

                              
(26) 

By performing algebraic operations on Eq. (26), the 
result is: 
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(27) 

The ik  function is used to approximate the part 

( )i isign s  of the controller and to eliminate the 

chattering phenomenon. We approximate this function 
with the fuzzy system: 
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(28) 

In the above relations, the * indicates the optimal value 
of the estimate. By doing some algebraic operations, 
substituting ik  and the adaptive rules Eq. (23) and Eq. 

(27): 
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Since each node does not have any delay in the 
exchange of information with itself, so the above 
relation can be rewritten as follows: 
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Simplification of the above relation gives: 

 

 

   

1 1

1
1 *

3

2

1

1

2

i

i

N N
T T

t i i i i ij i
i i j N

T
i

i i i
i

N

ij i j
i j N

V Z c s s s a b

f
g

x

a s t s t T

 

  

 

 
     

 
    

  

  

  

 



 (31) 

The minimum error approximation is defined as 
follows: 
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(32) 

In this case V changes as follows: 
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According to the universal theorem of approximation 
for fuzzy systems, iw can be reduced enough such that 

the following inequality holds: 
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This inequality and the definition of Lyapunov 
candidate function in Eq. (25) confirm the boundedness 

of ˆ, , ( ) ( ), ( ) ( )i i i i i js s t s t T s t s t T     . Based on the 

discussion in [31] and [32], for every agent in the group 
the values of ( ), ( ) ( ), ( ) ( )i i i i js t s t s t T s t s t T     

converge to zero, asymptotically. Furthermore, 
considering the sliding surface definition, it can be 
concluded that for each agent, which is in direct 
communication with the leader, the values of 

0( ) ( )ix t x t   and for other agents the values of 

( ) ( )i jx t x t   converge to zero asymptotically. As a 

result, the agents achieve synchronization in motion 
and follow the reference state of the leader. The same 
proof procedure can be carried out for the leader agent 
with this exception that the term

1
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i

tN
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ij i i
i j N t T

a s s d  
  

 
  
 

     is removed from the 

Lyapunov candidate function. 

4. Simulation 

In this section, numerical results of implementation of 
the proposed controller on two UASs are presented. 
These systems have motion equations similar to Eq. 
(2). The communication graph for both examples are 
similar and are as shown in Fig. 1. The agent 1 is leader 
and agents 2 and 3 are followers. Throughout this 
paper, the set of MFs are considered as Fig. 2, in which 
NB, NM, NS, PS, PM, and PB stand for negative big, 
negative medium, negative small, positive small, 
positive medium, and positive big, respectively. 

4.1. Rotating Inverted Pendulum 

The rotating inverted pendulum (RIP) is a system that 
includes an inverted pendulum attached to a rotating 
arm located in a horizontal plane, as indicated in Fig. 3. 
The 
motion equations of this system can be written for i th 
agent as follows [1]: 
motion equations of this system can be written for i th 
agent as follows [1]: 

 
Fig. 2. The set of MFs for sliding surface 

fuzzification 

A
(s

)
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where: 
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In these relations, jm , jl , jL , and jJ are the masses, 
the lengths of the centre of mass, the lengths and the 
moments of inertia of the links, respectively, and their 
values are given in Table 1. In addition, the coefficients 
value of the controller are given in Table 2. By 
following the procedure presented in [1], Eq. (35) can 
be transformed into cascaded form as: 
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(37) 

These equations are similar to Eq. (4) and can be used 
for applying the proposed controller. The desired 
values for 1 2[ , ]d d dq q q are [0,0]dq  . These desired 

values are known for leader and two followers have to 
follow the leader’s trajectory. The output signal is 
transmitted to agent 2 from leader with 0.5 second 
delay. 

 

Table 1. Numerical values of parameters in SI for RIPs [33]  

Parameters value 

Inertia of the links 1 2 41.98J J e  
 

Mass 0.0538
 

Length of the links 1 2 0.215L L   
Length of the centre 
of mass to rotor 

1 2 0.1075l l   

Table 2.
 
Numerical values of controller coefficients for RIPs 

Parameters value 

C11 = C12 = C13 3 

C21 = C22 = C23 6 

C31 = C32 = C33 3 

C1 = C2 = C3 3 
Гi = Fi I6 

 
a) The angle of vertical link 

 
b) The angle of horizontal link 

 
c) The control effort 

 
Fig. 4. The performance of the proposed controller in tracking 

the consensus value for RIP example 

Time (s)0 10 20 30
-0.6

-0.4

-0.2

0

0.2

0.4
RIP#1 (L)
RIP#2 (F)
RIP#3 (F)

 
Fig. 3. Rotary inverted pendulum [1] 
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5. Quadrotor 

The dynamic equations of the th quadrotor (Fig. 5) 
can be represented by the set of equations [32]: 
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 (38) 

Here , ,x y and z are three states corresponding to 

translational motion along three coordinate axes. , ,   

and   are roll, pitch, and yaw angles, respectively. 

The simulation results of applying proposed controller 
on the quadrotor’s under-actuated subsystem are 
provided in Fig. 6. The initial and desired values for 

states of under-actuated subsystem for 3 agents are, 

1 1 1 1[ ; ; ; ] [0;0;0;0]x y    , 

2 2 2 2[ ; ; ; ] [ 0.5; 0.5;0.01;0.01]x y      ,  

3 3 3 3[ ; ; ; ] [ 0.3; 0.3;0.02;0.02]x y      , and

[ ; ; ; ] [1;1;0;0]d d d dx y    , respectively. The 

communication topology is subjected to 0.5-second 
time delay, as well. As shown in Fig. 6, the follower 
agents drive to the unknown consensus value by the 
proposed method, very quickly.  

In order to investigate the robustness of the 
controlled system against uncertainties in system 
parameters, the values of moments of inertia in the 
controller are selected as 2x yI I   and 1.5zI   

instead of their real values in  

 

Table 3. The performance of the controller is 
demonstrated in Fig. 7. As can be seen, the proposed 
controller is robust against uncertainties in system 
parameters and the agents come to an agreement, 
rapidly. 

i
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Table 3.
 

Numerical values of physical and geometric 
properties in SI for quadrotors [32] 

Parameters value 
Moment of Inertia Ix = IY = 1.25, IZ = 2.2 

Mass 2 

Drag Coefficient 
C1 = C2 = C3 = 0.012  
C4 = C5 = C6 = 0.012 

Rotor Distance to 
Center of Mass 

l = 0.2 

 
Table 4.

 
Numerical values for controller coefficients for 

quadrotors 
Parameters value 

β1 12l2 

β2 10l1 

λ 3 
α 0.3 
ƞ 1 

b 0.01 
 

In order to make comparison between the results of the 
proposed controller performance and the conventional 
AFSMC, Fig. 8 has been drawn. Qualitatively, the 
proposed controller has improved the performance of 
the system in the transient part of the response, 

Fig. 5. Schematic of a quadrotor 

  
a) Consensus value tracking in the x-direction b) Consensus value tracking in the y-direction 

  
c) Consensus value tracking about x-axis d) Consensus value tracking about y-axis 

 
Fig. 6. The performance of the proposed controller in tracking the consensus values for quadrotor example when the system 

dynamics is exact 

x 
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considerably. In the conventional AFSMC, the agents 
move to their desired values after a drop in the response 
while in the proposed AFSMC the agents drive to their 
consensus values, immediately. Quantitatively 
speaking, the reduced percentage of rise-time for agents 
1, 2, and 3 in the proposed controller is about 30, 12.6, 
and 16.1, respectively in comparison with the 
conventional AFSMC. Furthermore, the reduced 
percentage of maximum overshoot is 0.04, 1.4, and 1.7 
for agents 1, 2, and 3, respectively. The maximum rise-
time is reduced to 1.6144 from 2.233. Also, the 
maximum overshoot is reduced to 1.7163 from 1.7455. 
These explanations show the superiority of the 
proposed controller in transient part of the response, 
especially rise-time, in comparison with the 
conventional AFSMC. 

 

 

 

 

 

 

 

6. Conclusions  

An improved AFSMC for synchronization of 
networked UASs under unknown communication delay 
is presented in this paper. The equivalent part of input 
control has been estimated by a TSK fuzzy system and 
the robust part of the controller has been modified in 
order to synchronize the states of the agents in the 
network. The results of the simulation show that by 
using the enhanced controller the follower agents, in a 
leader/follower paradigm of information network, 
converge to leader’s state in the presence of unknown 
communication delay, very quickly. In addition, the 
robustness of the enhanced controller against 
uncertainties has been shown through simulations. The 
most important feature of the proposed strategy is the 
improvement of the properties corresponding to the 
transient part of the response in comparison with the 
conventional AFSMC. As shown, significant 
improvement in reduction of rise-time of the response 

  
a) Consensus value tracking in the x-direction b) Consensus value tracking in the y-direction 

  
c)  Consensus value tracking about x-direction d) Consensus value tracking about y-axis 

 
Fig. 7. The performance of the proposed controller in tracking the consensus values for quadrotor example when the 

uncertainties in moments of inertia exist. 
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is achieved by the proposed AFSMC. 
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