[1] B. d’Andrea-Novel, G. Bastin, and G. Campion. “Modeling and control of non holonomic wheeled mobile robots”, In Proceedings of 1991 IEEE Int. Conf. on Robotics and Automation, pp.1130-1135, Sacramento, CA, April 1991
[2] J. P. Laumond, S. Sekhavat and F. Lamiraux, “Guidelines in nonholonomic motion planning for mobile robots”, (pp. 1-53), Springer Berlin Heidelberg, 1998.
[3]
Y. Zhuang,
Y. Liu,
W. Wang,
Z. Zhan, “Hybrid path planning for nonholonomic mobile robot based on steering control and improved distance propagating”,
Int. Conf. on Modeling, Identification and Control (ICMIC), pp. 704 – 709, Okayama, Japan, 2010
[4] Frazzoli, Emilio, Munther A. Dahleh, and Eric Feron. “Real-time motion planning for agile autonomous vehicles”, Journal of Guidance, Control, and Dynamics 25.1, pp. 116-129, 2002.
[5] C. Samson and K. Ait-Abdcrrahim. “Feedback stabilization of a nonholonomic wheeled mobile robot”, In Proc. 8 of the Int. Conf. on Intelligent Robots and Systems (IROS), 1991.
[7] N. Sarkar, X. Yun, and V. Kumar, “Dynamic Path Following A New Control Algorithm for mobile Robots”,
Proc. of the 32nd IEEE Conf. on Decision and Control, 3, 2670-2675, San Antonio, Texas, Dec. 1993.
[8] X. Yun and Y.Yamamoto, “Internal dynamics of a wheeled mobile robot”, Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS, Vol.2, pp. 1288-1294, 1993.
[9] V. Utkin, “Variable structure systems with sliding modes”, IEEE Trans. on Automatic Control, Vol. 22, issue 2, pp. 212-222, 1977.
[10] H. R. Ramirez, Variable structure control of non-linear systems,
Int. J. System Sci., Vol.18, no. 9, pp. 1673-1689, 1987.
[11] H.S. Shim, J. H. Kim; K. Koh, “Variable structure control of nonholonomic wheeled mobile robot”, Proc. of the IEEE Int. Conf. on Robotics and Automation, Vol. 2 pp. 1694-1699, 1995.
[12] Y. Wu, X. Yu, Z. Man, “Terminal sliding mode control design for uncertain dynamic systems”, Systems & Control Letters 34, pp. 281-287, 1998
[13] M. Zhihong, A. P. Paplinsky and H. R. Wu, A robust MIMO terminal sliding mode control scheme of rigid manipulators, Automatica, Vol. 38, Issue 12, pp. 2159=2167, Dec. 2002.
[14] S. Yua, X. Yub, B. Shirinzadehc and Z. Mand, “Continuous finite time control for robotic manipulators with terminal sliding mode”, Automatica, Vol.41, no. 11, pp.1957-1964, nov. 2005.
[15] C. L. Chen, C. W. Chang and H. T. Yau, “Terminal sliding mode control for aeroelastic systems”, Jour. of Nonlinear Dynamic, Springer, Vo. 38, no. 12, pp. 2015-2026, Nov. 2012.
[17] S. Y. Chen and F. J. Lin, “Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system,” IEEE Trans. Control Syst. Technol., vol. 19, no. 3, pp. 636–643, May 2011.
[19] T. Binazadeha and M.H. Shafieia, “Nonsingular terminal sliding-mode control of a tractor–trailer system”, Systems Science & Control Engineering: Taylor & Francis, Vol. 2, pp. 168–174, 2014.
[20] D. Zhao, S. Li, Q. Zhu, “ Output feedback terminal sliding mode control for a class of a second order nonlinear systems”, Asian Journal of control, Wiley Online Library, Vol. 15, No. 1, pp. 1-11, Jan. 2013.
[21] S. Ding, W. X. Zheng, “Nonsingular terminal sliding mode control of nonlinear second-order systems with input saturation ”, Int. J. Robust Nonlinear Control, 26: 1857-1872, 2016.
[22] P. S. Londhe, D. D. Dhadekar, B. M. Patre, L. M. Waghmare, “Non-singular Terminal sliding mode control for robust trajectory tracking control of an autonomous underwater vehicle”, IEEE Indian Control Conference (ICC), 4-6 Jan. 2017, Guwahati, India.
[23] R. Balakrishna and A. Ghosal, “Modeling of slip for wheeled mobile robots”, IEEE transactions on Robotics and Automation, 11(1):126-132, 1995.
[24] L. Garcia and J. Tornero, “Kinematic modeling of wheeled mobile robots with slip”, Advanced Robotics, Taylor & Francis, V. 21, No. 11, pp. 1253-1279, 2007
[25] N. Sidek and N. Sarkar, “Dynamic modeling and control of nonholonomic wheeled mobile robot subjected to wheel slip”, PhD thesis, Vanderbilt University, 2008.
[26] Y. Tian and N. Sarkar, “Formation control of mobile robots subjected to wheel slip”, In IEEE International Conference on Robotics and Automation (ICRA), pp. 4553-4558, 2012.
[27] Y. Tian, N. Sarkar, “Control of a mobile robot subject to wheel slip”, J. Intell. Robot Syst., Springer, V. 74, issue 3-4, pp.915-929, June 2014.
[28] R. Jayachandran, S. D. Ashok, S. Narayanan, “Fuzzy logic based modeling and simulation approach for the estimation of tyre forces”, Int. conf. on design and Manufacturing, (IConDM), Procedia Engineering 64, pp. 1109-1118, 2013.
[29] L. Li and F. Y. Wang, “Advanced motion control and sensing for intelligent vehicles,” Springer Science & Business Media, 2007.
[30] E. Bakker, L. Nyborg and H. B. Pacejka, “Tyre modeling for use in vehicle dynamics studies,” SAE technical paper No. 870421, 1987.
[31] E. Bakker, H. B. Pacejka and L. Linder, “A new tyre model with an application in vehicle dynamics studies,” SAE technical paper No. 890087, 1987.
[32] H. B. Pacejka and E. Bakker, “The magic formula tyre model: Tyre-model,” Proc. of 1st Int. Colloquium on tyre models for vehicle dynamics analysis, pp. 1-18, Netherlands, 1991.
[33] H. B. Pacejka and I. J. M. Besselink, “Magic formula tyre model with transient properties,” Vehicle system dynamics, 27(S1), 234-249.
[34] G. Genta, “ Motor Vehicle Dynamics: Modeling and Simulation,” Word Scientific Pub Co Pte. Lmd, 1997, ISBN 9810229119.