1. A. Seyfarth, S. Grimmer, D. F. B. Haufle, K.T Kalveram, Can Robots Help to Understand Human Locomotion? Automatisierungstechnik, 60 (11) (2012) 653-660.
2.K. T. Kalveram, A. Seyfarth, Inverse biomimetics: How robots can help to verify concepts concerning sensorimotor control of human arm and leg movements, Journal of Physiology-Paris, 103 (3–5) (2009) 232-243.
3. T. Buschmann, A. Ewald, A. V. Twickel, and A. Büschges, Controlling legs for locomotion-insights from robotics and neurobiology, Bioinspir. Biomim. 10 (2015)1-38.
4. J. Rummel, Y. Blum, and A. Seyfarth, Robust and efficient walking with spring-like legs, Bioinsp. Biomim, 5 (2010) 1-13
5. F. Boyer, and M. Porez, Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational aspects, Bioinspir. Biomim. 10 (2015) 1-21.
6. J. Y. Jun, and J. E. Clark, Characterization of running with compliant curved legs, Bioinspir. Biomim. 10 (2015) 1-18
7. B. Stephens, Push recovery control for force-controlled humanoid robots, PhD thesis, Carnegie Mellon University, USA, 2011.
9.
S. K. Yun, and A. Goswami, Momentum-Based Reactive Stepping Controller on Level and Non-level Ground for Humanoid Robot Push Recovery,
IROS 2011, San Francisco, CA, September 2011.
10. B. Miripour Fard, A. Bagheri, A. S. Khoskbijari, Receding Horizon Based Control of Disturbed Upright Balance with Consideration of Foot Tilting, IJE TRANSACTIONS A: Basics, 26 (10) (2013) 1243-1254.
11. Y. J. Kim, J.Y. Lee, and J. J. Lee, A Torso-Moving Balance Control Strategy for a Walking Biped Robot Subject to External Continuous Forces, Int. J. Humanoid. Robotics. 12 (01) (2015).
12. Y. J. Kim, J.Y. Lee, and J. J. Lee, A Balance Control Strategy for a Walking Biped Robot under Unknown Lateral External Force using a Genetic Algorithm, Int. J. Humanoid. Robotics. 12 (02) (2015) 1-37
13. A. H. Adiwahono, C. M. Chew, W. Huang, and Y. Zheng, Push recovery controller for bipedal robot walking" In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, (2009) pp.162-167.
15. A. H. Adiwahono, C. M. Chew, and B. Liu, Push Recovery through Walking Phase Modification for Bipedal Locomotion, Int. J. Human. Robot. 10 (03) (2013) 1-30.
16. J. Urata, K. Nshiwaki, Y. Nakanishi, et al., Online decision of foot placement using singular LQ preview regulation, In: 2011 IEEE/RAS International Conference on Humanoid Robots, Bled, Slovenia, (2011) pp.13-18.
17. T. Wang, Ch. Chevallereau and C. F. Rengifo, Walking and steering control for a 3D biped robot considering ground contact and stability, Robotics and Autonomous Systems; 60 (2012) 962-977.
18. B. Miripour Fard, A. Bagheri and N. Nariman-zadeh, Limit cycle walker push recovery based on a receding horizon control scheme, Proc IMechE Part I: J Systems and Control Engineering; 226(7) (2012) 914–926.
19. Ch. Chevallereau, J. W. Grizzle and Ch. L.Shih, Asymptotically stable walking of a five-link underactuated 3-D bipedal robot, IEEE Trans Robot; 25(1) (2009) 37-50.
20 Ch. Chevallereau, J. W. Grizzle and Ch. L Shih, Steering of a 3D bipedal robot with an underactuated ankle, In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, (2010) pp.1242-1247.
21 G. Song and M. Zefran, Underactuated dynamic three-dimensional bipedal walking, In: 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, (2006) pp. 854-859.
22 D. Tlalolini, Ch. Chevallereau, and Y. Aoustin, Human-like walking: optimal motion of a bipedal robot with toe-rotation motion, IEEE/ASME Transactions on Mechatronics, 16(2) (2011) 310-320.
23. J. J. Craig, Introduction to Robotics Mechanics and Control, 2th edn. (Addison- Wesley, USA, 1989), pp.196-205.
24. D. Tlalolini, Y. Aoustin and Ch. Chevallereau, Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization, Multibody Syst Dyn; 23 (2010) 33-56.
25. W. Khalil, and J. Kleinfinger, A new geometric notation for open and closed loop robots, In: IEEE Conference on Robotics and Automation, (1985) pp.1174-1180.
26. ER. Westervelt, J. W. Grizzle, Ch. Chevallereau, et al., Feedback control of dynamic bipedal robot locomotion, (London: Taylor and Francis/CRC, 2007).
27. B. Morris and J. W. Grizzle, A restricted Poincar´e map for determining exponentially stable periodic orbits in systems with impulse effects: Application to bipedal robots, In: 2005 IEEE Conference on Decision and Control, Seville, Spain, (2005) pp. 4199-4206.
28. B. Morris and J. W. Grizzle, Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots, IEEE Transactions on Automatic Control, 54(8) (2009) 1751-1764.
29. D.G.E. Hobbelen, and M. Wisse, A disturbance rejection measure for limit cycle walkers: the gait sensitive norm, IEEE Trans. on Robotics, 23(6) (2007) 1213-1224.
30. V. B. Semwal, S. A. Katiyar, R. Chakraborty, G. C. Nandi, Biologically-inspired push recovery capable bipedal locomotion modeling through hybrid automata, Robotics and Autonomous Systems 70 (2015) 181–190.
31. V. B. Semwal, and G. C. Nandi, Toward Developing a Computational Model for Bipedal Push Recovery–A Brief, IEEE Sensors Journal, 15(4) (2015) 2021-2022.
32. V. B. Semwal, A. Bhushan, and G. C. Nandi, Study of humanoid push recovery based on experiments, in: Proceeding of IEEE International Conference on CARE, (2013), pp. 1–6.
34. A. F. Cordero, HJFM. Koopman and FCT. Helm, Mechanical model of the recovery from stumbling, Biological Cybernetics, 91(2004) 212-220.