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In this research, first, kinematic and dynamic equations of a 4-DOF 3-link robotic 

finger are derived using Denavit-Hartenberg convention and Lagrange’s formulation. 

To model the muscles, several springs and dampers are placed between the finger links. 

Then, two advanced controllers, namely adaptive-robust and adaptive-neural, which 

can control the robotic finger in presence of parametric uncertainty, are applied to the 

dynamic model of the system in order to track the desired trajectory of tapping. The 

simulation of the dynamic system is performed in presence of  10% uncertainty in the 

parameters of the system and the results are obtained when applying the two controllers 

separately on the robotic finger dynamic model. By comparing the simulation results 

of the tracking errors, it is observed that both controllers perform decently; however, 

the adaptive-neural controller has a better performance. 

Keywords: 

Bio-inspired  

Robotic Finger 

Dynamic Modeling 

Control 

 

1. Introduction  

In order to design robotic hands with dexterous activities, 

it is common, to take advantage of the inspirations of the 

human hand. Virtual reality (VR) and tele-operation are 

two prominent examples of using ideas of hand motion in 

the technology, [1]. Large number of DOFs of human 

hand makes it possible to orient 

it in arbitrary spatial positions and perform tasks 

like tapping, grasping, holding objects, etc. 

However, the large number of DOFs will make the study 

of hand’s kinematics and dynamics very complicated. 

One way to overcome this difficulty is to, first, study a 

finger and then combine several fingers to complete 

biomechanical study of a hand.  

In many researches, fingers are considered as three 

mechanical links attached together serially by revolute 

joints. In the researches that the methacarpophalangeal 

(MCP) joint is assumed as a 1 DOF hinge, the finger 

movements are assumed to be planar. A more complex 

finger has also been investigated assuming three 

dimensional 4-DOF motion of a digit [1]; in this research 

the second approach will be followed.  

On the other hand, the hand muscles cause the hand 

motion to be soft and flexible and provide the ability to 

carry out precise jobs which need high excessive force. In 

recent biomechanical studies of human hand, some 

musculoskeletal models, an acknowledged one is the 

Hill's model, are used to find forces in the muscles, [2]. 

However, some other researchers have been trying to use 
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new ways for modeling the muscles. Lee et al. 

investigated human upper extremity musculoskeletal 

structure by using adjustable springs to model the 

muscles, [3]. In this paper, the latter will be utilized. It is 

a common practice for the researchers to employ the 

analytical methodologies to obtain robot dynamics; the 

most utilized ones are Newton and Lagrange’s methods. 

For example, Boughdiri et al. derived an efficient 

dynamic equation for a multi fingered robot hand by the 

Lagrange’s formulation [4]. The dynamic models can 

later be modified by using some experimental data, [5]. 

For example, Yun et al. analyzed repetitive finger flexion 

and extension by taking the measurement data from the 

CyberGlove system to obtain dynamic characteristics of 

the finger movement, [6]. 

The control problem of finger robots, and consequently 

multi fingered robot hands, is one of the challenging 

issues in this field due to highly nonlinear dynamic 

equations, external disturbances and parametric 

uncertainty. Mainly hand robots are controlled by either 

model based [7-9] or knowledge based [9-14] controllers. 

Model based controllers are usually used in the cases that 

high precision of fingertip position is needed. Therefore, 

the prerequisite of using these controllers is existence of 

a mathematical dynamic model for the system that can 

describe the robot behavior precisely, [6]. Boughdiri 

considers the problem of model-based control for a multi-

fingered robot hand grasping an object with known 

geometrical characteristics [14]. 

In the article by Lee et al., a forward dynamic model of 

human multi-fingered hand movement is proposed. It is 

shown that if a simple PD control scheme is applied to the 

multi-link system, the resulting movements would be of 

different characteristics from those of actual human 

movements, [13]. Arimoto et al. utilized an intelligent 

controller for grasping and manipulation of an object 

performed by a multi-fingered robotic hand [15]. Lee et 

al. investigated finger joint coordination during tapping, 

using muscle activation patterns and energy profile [16]  

 

Figure 1. the schematic of the bone segments and 

joints of the index finger 

A keystroke structure contains two basic movements: 

first, touching the key and pressing it downward; second, 

moving up the finger and releasing the keyswitch. While 

striking a key, the methacarpophalangeal joint flexes and 

the distal interphalangeal and proximal interphalangeal 

joints extend. During releasing a key the joints move in 

opposite direction to prepare for the next keystroke, [16]. 

The bone segments and joints of the index finger are 

shown in figure1 

In the current study, we attempt to obtain a human 

inspired model for one finger that includes the effects of 

muscles. After deriving a dynamic model by Lagrange’s 

formulation for finger motion, we will try to apply two 

advanced controllers for tapping motion on a keyboard. 

The desired trajectory for tapping is extracted from the 

experimental data of finger joints, [2], and will be used as 

the reference input to the system. 

2. Kinematics of the robotic finger 

     A 4 DOF serial robot is considered as the model of 

a finger robot. The first 2 DOFs correspond to the 

flexion-extension and abduction-adduction 

movements of the methacarpophalangeal joint. The 

third and fourth degrees of freedom are related to 

flexion-extension movements of proximal 

interphalangeal and distal interphalangeal joints, 

respectively. The muscles are simulated by setting 

some springs and dampers between the links. Lee et al. 

suggested an efficient way to put optimum 

number of springs between the links of a 3 DOF 

serial robot so the individual effect of each spring 

can be observed at the task space, [3]. As it is shown in 

Figure 2, six springs and dampers are located between the 

links which include three mono-articular, two bi-articular 

and one tri-articular springs. 

 

Figure 2. 2-D schematic of finger robot and the 

location of spring-damper sets 

As it can be seen in Figure 1, ai and bi, i= 

1,2, ...,6, show the distances between the points that 

springs and dampers are attached to the links and joints. 

To obtain the kinematics and dynamics of a serial robot, 

the Denavit-Hartenberg convention is used to determine 
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the required parameters for obtaining the homogenous 

transfer functions. The Denavit-Hartenberg parameters 

for each link can be determined as presented in Table  1. 

Table  1- The Denavit-Hartenberg parameters for each 

link of the finger robot 

Link ▀░ ╪░ ♪░ Ᵽ░ 

1 0 0 /2π — 

2 0 2L /2π- — 

3 0 3L 0 — 

4 0 4L 0 — 
 

ὒ is the length of the segment of the link which is located 

between the joints Ὥ and Ὥ ρ. All the joints are revolute; 

so, the general coordinate ή is defined as —, the Ὥth joint 

coordinate. 

Using Denavit-Hartenberg convention and the related 

parameters (see Table 1), the homogeneous transformation 

matrix l - 1At  for each link can be obtained. The product of 

these matrices gives the matrix T4 as follows: 

In the forward kinematic problem the coordinates of the 

end-effector are obtained in terms of joint variables. The 

transformation matrix from the origin of the end-effector 

to the base reference frame is 

0 0 0 1

R

E

c c c s s s c c s c s s x

s c s s s c c s s c c s y
T

s c s c c z

a b a b g a g a b g a g

a b a b g a g a b g a g

b b g b g

Ö Ö Ö - Ö Ö Ö + Öå õ
æ ö
Ö Ö Ö + Ö Ö Ö - Öæ ö=

æ ö- Ö Ö
æ ö
ç ÷

 

(2) 

 

The results of equating these two matrices are: 

ὼ ὒὧὧ ὒίὧί ὧὧί
ὒίί ὒὧ ίί ὧὧὧ ὒὧὧὧ  (3) 

Ù ὒίὧὧ ὧίί ὒὧί
ὒὧί ὒὧ ὧί ὧὧί ὒὧὧί  

(4) 

Ú ὒί ὒὧί
ὒὧὧί ὒίίί

 (5) 

Equations (3) to (5) give the position coordinates of the 

end-effector in the base frame. In order to obtain the roll-

pitch-yaw angles of orientation of the end-effector with 

respect to the base frame, namely ,  and , we use the 

components 31, 32, 33, 21 and 11 of T4 which yield: 

 ὃÔÁÎ
ὧίί ὧίί

ὧ
 (6) 

 ὃÔÁÎ

ὧὧί ίίίȟ
ὧίί ὧίί

ί
 (7) 

 ὃÔÁÎ  

ở

Ở
ờ

ὧ ὧί ὧὧί ίὧὧ ὧίί

ὧ
ȟ

ὧ ίί ὧὧὧ ίὧί ὧὧί

ί Ợ

ỡ
Ỡ

 
(8) 

where si stands for sin(ɗi) and ci sands for cos (ɗi), i= 1,…, 

4. For the forward kinematics of the robot two sets of 

solution are obtained. The correct solution is chosen in a 

way that the end-effector coordinates change 

continuously. 

3. Dynamics of the finger robot 

There are two main approaches to generate the dynamic 

model of a robotic finger; Lagrange’s formulation and 

Newton-Euler formulation. In this paper Lagrangian 

methodology is exploited to obtain the dynamic model of 

a robotic finger. 

Applying Lagrange’s formulation to a manipulator, 

results in a matrix form equation which is more 

appropriate for computer analysis[4]. 

The Extended Lagrange’s equation when there exists 

dissipation energy is: 

Ὠ

Ὠὸ

ὒ

ή

ὒ

ή

ὗ

ή
† ȟ

Ὥ ρȟςȟȣȟτ 

(9) 

where, ὒ is the Lagrangian function that is equal to the 

difference between the total kinetic energy, K, and the 

total potential energy, P; ή is the ith generalized 

coordinate of the robot,  ή is the first time derivative of 

the corresponding generalized coordinate, ὗ  is the 

dissipation energy of the system which is determined by 

calculating the dissipation energy in the dampers and †  

is the generalized force (or torque) applied to the system 

at joint Ὥ to drive the Ὥth link. 

There are some major assumptions adopted in this study: 

* Each finger is considered as a rigid body.  

* Deformation of the fingertips is not considered.  

* The finger segments are considered as the collection of 

cylindrical links. 

Now we need to calculate the required energies to be 

substituted in Lagrange’s formulation.  

The kinetic energy for a 4 DOF serial robot is obtained 

by: 

Ὕ   ὃ   ὃ   ὃ   ὃ  (1) 
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ὑ
ρ

ς
ὸὶὥὧὩ

ЋὝ

Ћή
Ὅ
ЋὝ

Ћή
ήή  

(10) 

Having the link transformation matrices, the homogenous 

transformation matrix from frame (i) to (0) is: 

Ὕ   ὃ   ὃȣȢ   ὃ (11) 

As the links are assumed cylindrical, the matrix of 

moments of inertia will be obtained as: 

2

2

0 0 (1)

0 0 0 (2)

0 0 0 (3)

(1) (2) (3)

1
( )

12

(1)

1

ii

i
ii

ii

i

i

i i ii i i

i

m X

I
m X

m X

m X m X m X

m L i

m X

è ø
é ù
é ù
é ù
é ù=
é ù
é ù
é ù
é ù
ê ú

+
 

(12) 

where ὢ is the center of gravity of the Ὥth link and ά  is 

the total mass of the Ὥth link. Then, the kinetic energy of 

each link can be obtained. The kinetic energy of the whole 

system is the summation of the kinetic energies of all 

links. 

+ + (13) 

The potential energy in this study is due to elastic energy 

of the springs together with the gravitational energy of the 

links. The gravitational energy of each link can be 

computed as: 

ὖ ὫὝὍὩ (14) 

where, Ὕ is the homogenous transformation matrix from 

frame (i) to (0), Ὅ is the matrix of moments of inertia of 

the Ὥth link, the vector Ὣ is [ ]Tzyx gggg 1=  and vector 

Ὡ is defined as [ ]Te 10004 = . 

The gravitational energy of the whole system is the 

summation of the gravitational energies of all links. 

ὖ ὖ (15) 

The next step is to calculate the elastic energy of each 

spring. The lengths of springs in an arbitrary position can 

be obtained according to the angles of orientations of the 

links. The number of the springs are defined as shown in 

Figure 3: 

 

 

Figure 3.  The number of the springs acting on the 

robotic finger 

 

Ὠ ὥ ὦ ςὥὦÃÏÓʃ 

Ὠ ὥ ὦ ςὥὦÃÏÓʃ 

Ὠ
ὰ ὦὧέί— ὥÃÏÓ—  

ὥίὭὲ— ὦÓÉÎ—  
 

Ὠ

ở

Ở
Ở
ờ

ὰὧέί— ὰÃÏÓʃ ʃ

ὦÃÏÓʃ ʃ ʃ

ὰίὭὲ—

ὰÓÉÎʃ ʃ

ὦÓÉÎʃ ʃ ʃ Ợ

ỡ
ỡ
Ỡ

Ȣ

 

Ὠ
ὰ ὥὧέί— ὦÃÏÓ—  

ὦίὭὲ— ὥÓÉÎ—  
 

Ὠ ὥ ὦ ςὥὦÃÏÓʃ 

(16) 

 

The elastic energy of spring Ὥ is then: 

ὖ
ρ

ς
ὑ Ὠ Ὠ      Ὥ

ρȟςȟȣȟφ 

(17) 

Where ὑ  and Ὠ are the stiffness coefficient and the 

initial length of spring Ὥ, respectively. 

The total elastic energy of the robot is the summation of 

elastic energies of all 6 springs. 

ὖ ὖ (18) 
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Now the total potential energy of the finger robot is 

calculated by adding total elastic energy and total 

gravitational energy of the system as: 

ὖ ή ὖ ὖ (19) 

In order to calculate the dissipation energy of each 

damper, it is required to obtain the rate of length change 

of each damper. So, the dissipation energy of each 

damper can be obtained as: 

ὗ
ρ

ς
ὅὨ (20) 

where ὅ and Ὠ represent damping ratio and rate of length 

change of damper Ὥ, respectively.  

Total dissipation energy of the finger robot is the 

summation of dissipation energies of all dampers. 

ὗήȟή ὗ (21) 

Having the kinetic and potential energies of the system, 

the Lagrangian L is defined as: 

ὒήȟή ὑήȟή ὖή (22) 

After substituting the corresponding terms of system 

energies in the Lagrange’s formulation, the dynamic of 

one finger digit is described by the following  

ὓ ήή ὅήȟήή Ὃή † (23) 

Where ὓ is the matrix of inertia and each of its 

components can be calculated as: 

ά ὸὶὥὧὩ
Ὕ

ή
Ὅ
Ὕ

ή
 ȟ

 (24) 

ὅ consists of Coriolis, centrifugal and gyroscopic terms 

and each of its components can be obtained as 

ὧ В ή  (25) 

 

Matrices ὓ and ὅ are the same in both skeletal and 

musculoskeletal models of a digit. 

Ὃ is obtained by differentiating the total potential energy 

with respect to the vector of generalized coordinates, q: 

Ὃ  
ὖ ή

ή
 (26) 

The vector Ὂ which indicates the damping terms is 

calculated as: 

Ὂ  
ὗήȟή

ή
 (27) 

After determining the elements of matrices it can be 

shown the matrix ὔ ὓ ςὅ is skew-symmetric. 

4. Control of the robotic finger 

So far, we have derived the dynamic equations of a finger 

robot (containing the effects of muscles by considering 

some springs and dampers in the system). Now, it is 

possible to apply any model based controllers to the 

system in addition to intelligent controllers. 

The coefficients of springs and dampers are not 

constant and vary in a specific range 

based on the movement of the finger. These coefficient 

variations in the dynamic model cause uncertainties in the 

model of the system. The adaptive-robust and adaptive-

neural control methods considered in this research can 

add robustness to the control system against these 

uncertainties. 

In the following, the tracking of the desired trajectory of 

tapping is investigated considering 10% uncertainties in 

the values of masses, stiffness parameters of springs and 

coefficients of dampers while the mentioned controllers 

are applied to the system. 

5. Adaptive-Robust control method 

The combination of robust and adaptive 

controllers has some prominence over each of them 

alone. This combination makes the control system 

overcome each controller's disadvantages and show 

good performance in the presence of disturbances and 

parameter uncertainties. 

In this research, first, based on a robust control 

method, some bounds are assumed on the parameters and 

then by using the adaptive method these bounds are 

estimated. 

The control law then would be as chosen as equations 

(28)-(30) 

† ὓ‟ ὅ‟ Ὣ ὑ„ ό (28) 

‟ ή ɤή  (29) 

where ή ή ή 

„ ή ‟ ή ɤή (30) 

In which ˆˆ ,M C and Ĝ are approximations of ,M C and 

G . 
DK and L are positive definite matrices and ή 

represents the vector the desired trajectories of the 

generalized coordinates. 

We can rewrite equation (28) as 
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ὓ„ ὅ„ ὑ ύ ό (31) 

where 

ύ ὓ ὓ ‒ ὅ ὅ‒ Ὣ Ὣ  (32) 

  

0u  can then be taken as: 

ό ” ‐ ”ᴁ„ᴁϳ „ (33) 

where r is defined as 

”  ᴁὩᴁ ᴁὩᴁ

ρ ᴁὩᴁ ᴁὩᴁ    Ὓ— 
(34) 

where Ὡ ή ή. 

The vector of estimated parameters — will be updated by: 

— — Ὓᴁ„ᴁ (35) 

where ˆq q q= -and they are defined as 

” Ὓ— , ” Ὓ— (36) 

with ᴁύᴁ ”. 

And the time derivative of e can be defined as 

‐ Ὧ‐ȟ‐π π (37) 

where ὑ is selected as a positive definite matrix. Figure 

4 shows the schematic of the closed-loop control system 

when applying the adaptive-robust controller. 

 

 

 

Figure 4. The schematic of the adaptive-robust controller 

By taking the Lyapanov function as  

ὠ
ρ

ς
„ὓ„

ρ

ς
— — ὑ ‐ (38) 

It can be shown that its time derivative is 

ὠ
ρ

ς
„ὓ„ „ὓ„ — —

ὑ ‐ 
(39) 

 

By substituting equations (31) and (35) in (39), we will 

have: 

ὠ
ρ

ς
„ὓ„ „ ύ ὅ„ ὑ„ ό

— Ὓᴁ„ᴁ

ὑ ὑ‐ 

(40) 

 

Using skew-symmetric property of ὓ ςὅ and 

substituting equations (33), (34), (36) and (37), we can 

rewrite equation (40) as: 

ὠ

„ύ „ό „ὑ„ —Ὓᴁ„ᴁ
‐

„” „ό „ὑ„ —Ὓᴁ„ᴁ
‐

—Ὓᴁ„ᴁ „„
”

‐ ”ᴁ„ᴁ
„ὑ„

‐
‐Ὓ—ᴁ„ᴁ ‐ ‐Ὓ—ᴁ„ᴁ

‐ Ὓ—ᴁ„ᴁ
„ὑ„

‐

‐ Ὓ—ᴁ„ᴁ
„ὑ„ „ὑ„ 

(41) 

By using Barbalat lemma and the fact that ὠ is negative 

definite, considering equation (41), it can be proved that 

the vector of tracking error asymptotically approaches 

zero. 

 

6. Adaptive-Neural control method 

A neural network is usually used to approximate the 

dynamic model of a system. Based on the offline data 

taken from the system, an appropriate controller is 

applied to the system which causes the system to be 

compatible with the changes occurring in it. As a result, 

the combination of neural network and adaptive 

controller could be considered as a suitable control 

method for the systems with uncertainties in model 

parameters. In the following the adaptive-neural control 

method is applied to the finger robot considering 

uncertainties in the parameters of the system. In this 

method a three layer Gaussian radial basis function neural 

network is used to parametrize the control law. An 

identification law then identifies the parameters of the 

neural network and at the end the stability of the closed-

loop system is guaranteed by the Lyapanov method. 
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The Gaussian function is shown in eqation (42) 

ὥώ ÅØÐ 
ώ ʈ ώ ʈ

„
 (42) 

The static neural network of ( )M q   and ( )G q  which 

are just functions of q would be as considered as 

equations (43) and (44) 

ὓή ɡ ɆɧÑ Ὁ ή (43) 

Ὃή " Ɇ(Ñ Ὁ ή (44) 

And the dynamic neural network of ( , )C q q  which is 

function of both q and q   will be as: 

ὅήȟή ! Ɇ:Ú Ὁ ᾀ (45) 

Let ( )dq t be the desired trajectory in the joint space and 

( )dq t and ( )dq t be the desired velocity and 

acceleration. Defining 

Ὡὸ ή ὸ ήὸ (46) 

ή
ὶ
ὸ ή

Ὠ
ὸ ɤὩὸ (47) 

ὶὸ ή ὸ ήὸ Ὡὸ  ɤὩὸ (48) 

where ɤ is a positive definite matrix. It can be easily 

shown that if ÌÉÍ
ᴼ
ὶ π, then ÌÉÍ

ᴼ
Ὡ πȢ The control law 

then would be chosen as equation (49). 

ʐ ɡ Ɇ῾ή Ñ ! Ɇ

ὤᾀ Ñ " ɆὌή ὑὶ

ὑίὫὲὶ  

(49) 

where 
n nK R ³Í  and ὑ ᴁὉᴁ, with Ὁ Ὁ ήή

Ὁ ᾀή Ὁ ή † ή. The first three terms of the 

control law are model-based control terms, whereas the 

Kr term gives the proportional derivative (PD) type of 

control. The last term in the control law is added to 

suppress the modeling errors of the neural networks. 

Figure 5 shows the schematic of the neural adaptive 

control system. 

 

Figure 5. The schematic of neural adaptive control 

system 

 

Consider the nonnegative scalar function V as: 

ὠ ὶὓήὶ В — ɜ ʃ

В  1 ɻ В  . ɼ  
(50) 

to be the Lyapunov candidate, where ῲ, ὔ  and  ὗ  are 

dimensional compatible symmetric positive-definite 

matrices. Computing the derivative of equation (50) and 

simplifying it yield: 

 

ὠ ὶὝὓ ήὶ ὅήȟήὶ

В —Ὧ
Ὕ
ɜË
ρʃὯ

ὲ
Ὧ ρ В Ὧ

Ὕ
1
Ë
ρɻὯ

ὲ
Ὧ ρ

В 
Ὧ

Ὕ
.Ë
ρɼ
Ὧ

ὲ
Ὧ ρ   

(51) 

where the property of skew-symmetric has been used. In 

order to make the time derivative of the Lyapunov 

function be negative-definite, the update law for the 

weight parameters should be chosen as 

 

ʃ ɜɆʊÑ Ñὶ 

(52) ɻ 1 ɆʁÚήὶ 

ɼ .ʂ Ñὶ 

 

Substituting the weight parameter update laws into 

Equation (51), with ὑ ᴁὉᴁ yields 

 

ὠ Ò+Ò π (53) 

Therefore, ÌÉÍ
ᴼ
ὶ π, and so, it can be proved that the 

vector of tracking error, e, asymptotically approaches 

zero. 

 

7. Simulation and Results 

The finger robot studied in this research is a four DOF 

robot that all of its joints are revolute. One actuator is 

located on each single joint (total of four actuators) to 

provide the required torques computed by the controller 

to obtain the desired motion. The act of controlling is 

computerized using Simulink toolbox of MATLAB. The 

desired values of the joint angles are extracted from the 

experimental research done by Kuo et al., [2]. The act of 

tapping happens at 0.35 seconds and contains a full 

motion from striking the keyboard till rising the finger up. 

The values of the desired joint coordinates vs. time are 

given in Figure 6. 
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A 

 

b 

 

c 

Figure 6. The desired angles of joints: (a) 

methacarpophalangeal, (b) proximal interphalangeal 

(c) distal interphalangeal during tapping 

The desired motion of tapping is considered inside the 

plane so the desired motion of the 2nd DOF in 

methacarpophalangeal joint is set to the amount of zero. 

In the following the results of simulation of the finger 

robot when adaptive-robust and adaptive-neural 

controllers are applied to the dynamical system are 

shown. The results contain the variations of the 

generalized coordinates, ɗi,s, (actual and desired) versus 

time and the tracking error for each DOF. 

The initial values of joints angles are set as ή

πȢρ
π
πȢσ
πȢρ

.  

First the results of finger robot when applying the 

adaptive-robust controller are studied. The parameters of 

the control law are set as 
D 20 20 ŮK 10.  ,ɔ 0.8,K 0.1I ³= = = . 

Figure 7 illustrates the actual angles of joints compared 

with the desired path of tapping after applying the robust 

adaptive controller to the finger robot. 

 

a 

 

b 

 

c 

 

d 

Figure 7. The actual angles of (a) methacarpophalangeal 

flexsion-extension, (b) methacarpophalangeal abduction-

adduction, (c) Proximal interphalangeal (d) distal 

interphalangeal  joints versus the desired path of tapping after 

applying the robust adaptive controller on the finger robot 
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As it is shown in the figures, each individual joint tracks 

the corresponding desired trajectory properly. Next, the 

results of adaptive-neural controller are shown. The 

parameters of the control law are set to: 

 

 2

1000

0100
10 .      ,     0.1

0010

0001

r sK K

è ø
é ù
é ù= =
é ù
é ù
ê ú

. 

 

Figure 8 illustrates the actual angles of joints compared 

with the desired path of tapping after applying the neural 

adaptive controller to the finger robot. 

 

 

 

a 

 

 

 
b 

 

c 

 

d 

Figure 8. The  actual angles of (a) methacarpophalangeal 

flexsion-extension, (b) methacarpophalangeal abduction-

adduction, (c) Proximal interphalangeal (d) distal 

interphalangeal  joints versus the desired path of tapping 

after applying the neural adaptive controller on the finger 

robot 

As it is shown in the figures, each individual joint tracks 

its corresponding desired trajectory properly. 

Now the tracking errors of the generalized coordinates 

under application of either controller are illustrated and 

compared in Figure 9. 
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Figure 9. The error of (a) methacarpophalangeal 

flexsion-extension, (b) methacarpophalangeal abduction-

adduction, (c) Proximal interphalangeal (d) distal 

interphalangeal  joints  from the desired values after 

applying robust adaptive and neural adaptive controllers 

on the finger robot.  
 

 

As it is shown in the figures the adaptive-neural controller 

can make the error vanish in less time than the robust 

adaptive. Based on the figures it is observed that both of 

the proposed controllers are able to make the joint angles 

follow the desired trajectory properly despite the 10% 

uncertainties in the system parameters. However under 

the application of the intelligent control method- neural 

adaptive controller- reaching the desired convergence 

happens at a lower time (14% of total time) than the 

robust adaptive controller (19% of total time).  

8. Conclusion 

Considering the model offered for the human upper-

extremity by Lee et al. [3] a new musculoskeletal model 

for a robotic finger has been studied. 

The model was assumed as a 3-D one; but, the considered 

motion in this paper, tapping, was a 2-D one. The 

dynamic equations derived based on Lagrange’s 

formulation. Then adaptive- robust and adaptive-neural 

controllers are applied to the system and the procedure 

has been computerized using Simulink toolbox of 

MATLAB. Based on the results it is observed that the 

model is validated. Also by comparing the 2 controllers it 

can be resulted that the neural adaptive controller has a 

better performance. 

As future works, it is aimed to model and control the 5-

finger robotic hand in order to do the tasks like holding 

and grasping an object. 
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