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 Abstract—In this study, the problem of navigation in dynamic and unknown 

environment is investigated and a navigation method based on force field approach is 

suggested. It is assumed that the robot performs navigation in unknown environment 

and builds the map through SLAM procedure. Since the moving objects' location and 

properties are unknown, they are identified and tracked by Kalman filter. Kalman 

observer provides important information about next paths of moving objects which are 

employed in finding collision point and time in future. In the time of collision detection, 

a modifying force is added to repulsive and attractive forces corresponding to the static 

environment and leads the robot to avoid collision. Moreover, a safe turning angle is 

defined to assure safe navigation of the robot. The performance of proposed method, 

named Escaping Algorithm, is verified through different simulation and experimental 

tests. Besides, comparison between Escaping Algorithm and Probabilistic Velocity 

Obstacle (PVO), based on computational complexity and required steps for finishing 

the mission is provided in this paper. The results show Escaping Algorithm 

outperforms PVO in term of dynamic obstacle avoidance and complexity as a practical 

method for autonomous navigation. 
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1. Introduction 

2MOBILE robots find their path to the daily life of humans 

by the means of navigation. This general concept 

transforms a mobile robot from a "toy" to an autonomous 

system able to operate in unknown environment.  The 

motivation of developing navigation systems lies in two 

important aspects: assistive robotics and industrial 

applications. Examples of autonomous systems for 

assistive purposes are automated wheelchairs, robots 

able to find and manipulate objects, searching and rescue 

after catastrophe [1] and performing dangerous tasks 

instead of human like searching mines and monitoring 

the Fukushima nuclear site [2]. Such applications need 

both the ability to move in crowded environment and 

optimal path planning. Besides, industry benefits from 

the concept of navigation in different ways. The usage 

of autonomous systems decreases the expenses of health 

insurance (due to usage of robots instead of human) and 

raises the production rate due to operation with higher 

speed. 

There is a rich literature on the concept of navigation. 

Different navigation approaches are suggested by 

researchers for static or dynamic environment. The 

complete literature review on the navigation problem is 

mentioned in Section 2. A navigation scheme which 
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supposes complete knowledge of environment and 

dynamic obstacles will not provide a realistic framework 

for practical applications. This issue attracts researchers 

concern for further extension of navigation systems. 

Navigation in dynamic environment is a challenging 

topic from two aspects: 

 

1- Dynamic obstacles in the environment have 

unknown future motion. 

2- The robot is equipped with sensors with limited 

range of view. The robot does not have complete 

knowledge about environment. 

 

In this paper, these two challenges will be addressed. 

The main purpose of current study is suggesting a 

method for navigation in dynamic environment without 

considering any prior information about environment 

and dynamic obstacles. The first challenging topic will 

be addressed by categorizing observations to static and 

dynamic and tracking dynamic ones by the means of 

Kalman filter. The main contribution of this paper lies in 

solving the second issue and that is using Escaping 

Algorithm (EA) for navigation. In the mentioned method 

which is an extension of force field approach, the aim is 

leading the robot to the target while trying to avoid local 

obstacles. 

In our problem it is assumed that the environment is 

unknown to the robot. Hence the robot performs SLAM 

and navigates toward the target simultaneously. In each 

iteration of our routine, the robot incrementally 

completes its local map by performing SLAM and uses 

the local map to distinguish between dynamic and static 

obstacles. The robot predicts the path of dynamic 

obstacles and based on it, the modifying force is applied 

to the robot. The resultant total force leads the robot 

toward the target while avoids the local obstacles. The 

robot moves for a while (i.e. duration of the loop) and 

then the loop starts again by performing SLAM. This 

procedure continues until the robot reaches the target. 

This paper which is an extension to our previous work 

[35] is organized as follows: In section 2, a complete 

literature review of the navigation systems is presented. 

Section 3 provides environment representation and 

formulates the problem. The definitions of attractive and 

repulsive force in static environment are mentioned in 

this part. In section 4, escaping algorithm and its 

components are enlightened and the required steps to 

obtain repulsive force of dynamic obstacles are 

discussed. Section 5 contains simulation and 

experimental results of EA. Besides, EA is compared to 

PVO and the complexity analysis of both is included in 

this section. Finally, concluding remarks are given in 

section 6. 

2. Related Works 

Navigation systems have been extensively studied 

before. The problem of navigation in static environment 

is solved and saturated with different approaches like A* 

[3], [4] and force field method [5]. However, navigation 

in dynamic environment still attracts researchers' 

attention and motivates them for better and further 

developments. 

Some navigation systems divide the navigation 

problem into two parts: the first part is path planning 

from the start point to the target and the second part is 

designing a controller for tracking the path. Modified A* 

[6] and D* [7] are examples of these groups which 

search the cost map to generate the path. These methods 

usually suppose complete knowledge about environment 

or consider unknown locations as free and plan the path 

toward the goal. The expensive computation cost of 

these methods and the need of re-planning due to the 

change in the environment, limit their usage as an 

applicable navigation method. 

Another part of research involves navigation systems 

which solve for optimal or near optimal trajectory. Even 

though these navigators are fast, they usually plan 

locally and it is possible to trap in local minima. In [8], 

a horizon limited trajectory is produced by minimizing a 

utility function and considering obstacles with very low 

velocities. The idea of dynamic window is introduced in 

[9] and tries to find the control inputs by maximizing the 

cost function which contains the robot heading, distance 

to obstacles and the robot velocity. 

Rapidly exploring Random Trees (RRTs) method is a 

tool able to search high dimensional input space and 

consider vehicle dynamic. The method is suitable for 

searching complex environment [10]. In [11], partial 

path planning is done based on RRT that considers 

vehicle model constraints such as acceleration, steering 

velocity, and steering angle bounds and the real-time 

operation. 

A set of techniques named Velocity Obstacle (VO) 

exist that compute safe velocities for the robot based on 

obstacle velocities and the selected time horizon [12]. 

The main problem of this set is that they assume a 

complete knowledge about moving objects like their 

velocities. Recently, some navigation algorithms based 

on VO developed that consider the avoidance 

possibilities of workspace objects like [13] and [14]. 

These methods may trap in local minima and fail in some 

situations. 

The concept of Inevitable Collision State (ICS) 

introduced by [15] guarantees the motion safety criteria 

which is listed in [16]. The output of mentioned 

approach is a set of states for the mobile robot which 

leads to a collision and then, they are dangerous and 
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should be avoided.  This approach requires a complete 

environment model which is not realistic. In [17], the 

Probabilistic Inevitable Collision State (PICS) which is 

applicable for probabilistic settings is suggested. One of 

disadvantages of this method is that there is no reliable 

long-term motion prediction for humans. 

Potential field is one of the most common methods for 

path planning. The popularity of this method is due to its 

simplicity for implementation. This method was 

introduced by [5] and then improved for real time 

implementations in [18]. First, potential field approach 

was suggested for navigation in static environment [19], 

[20], [21], [22]. However, the real world is not 

stationary, and the robot moves in dynamic environment 

and encounters dynamic obstacles like moving humans. 

Researchers started to develop potential field methods 

for navigation in dynamic environment. In [23], the 

velocity of dynamic obstacles is included in the 

definition of potential function. The basic problem is that 

the collision depends on the velocity of both robot and 

obstacle; however, [23], considers only the speed of the 

robot. In [24] relative positions and velocities of the 

mobile robot with respect to the obstacles are considered 

in definition of potential function. However, this method 

needs exact knowledge of velocity of dynamic objects, 

which is not available in practice. Potential function to 

reach a moving target is defined in [25], but the 

velocities of the robot, obstacles and target are assumed 

to be known. 

The contribution of this paper is an extension of 

potential field approach for navigation in dynamic 

environment without considering any prior information 

about environment and moving objects. The proposed 

method provides safe motion for the robot operating in 

dynamic environment. This paper is an extension to our 

previous work [35] and describes more details about 

Escaping Algorithm. Besides, the current study includes 

comparison to another navigation system (PVO). 

2.1. The Environment Modeling and Problem 

Formulation 

2.1.1. The Environment Modeling 

In this paper, the popular occupancy grid map is used 

for environment modeling [26]. The occupancy grid map 

uses a matrix to represent obstacles. Each entity in the 

matrix is a symbol of one square part of environment and 

its quantity shows the confidence of the obstacle lying at 

this location. In this context, the size of square sides is 

set to 10 cm. Certainty values range from   to 
in occupancy grid maps. As the possibility of existence 

of an obstacle in specific square increases, the certainty 

values goes to  ; while for a free cell, this value 

approaches to  . The robot is equipped by one laser 

range finder and two encoders. Since laser is used to 

obtain information from environment, this map is 

suitably adapted to our system. In each range reading, 

the values of certainties are updated and used for 

navigation purposes. 

2.1.2. Problem Formulation 

The motion planning problem of a mobile robot is to 

plan and control it such that it reaches the target while 

avoiding obstacles. In Force Field Method (FFM) the 

obstacles exert repulsive force to the robot while the 

target attracts the robot to itself. The total force 

determines the direction of movement for the robot. The 

definitions of attractive and repulsive forces are not 

unique, and different definitions can be found in [27] and 

[25]. 

To use FFM for the mobile robot navigation, it is 

enough to suitably define the repulsive force of static 

objects, the attractive force of the target and the 

repulsive force of the dynamic objects and use their total 

direction for mobile robot steering. The last component 

will be explained in next section with more details. 

I. The repulsive force of static objects 

Since gird map is used for environment 

representation, the repulsive forces of static objects are 

defined for each occupied cell in grid map. To 

accomplish this task, it is needed to define a window on 

the robot coordinates and calculate the repulsive forces 

through it. This window is called active window and is 

used to avoid local obstacles while moving toward the 

target. For each cell in the active window, the repulsive 

force of static cell is calculated as follows. 
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in which, crF   is the repulsive force constant, ),( jiC

denotes the certainty of cell ),( ji , ijd denotes the 

Euclidean distance between the robot and cell ),( ji , 

),( ,, jiji yx  is the position of cell ),( ji , and ),( rr yx    

is the position of the robot. Total repulsive force is 

calculated by adding all repulsive forces in active 

window: 
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II. The attractive force of the target 

The robot moves toward the target while avoiding 

obstacle. As a result, it is not important that whether the 
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target is located in the active window or not, it always 

exerts its attractive force to the robot by the following 

relation: 
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In which, caF  denotes attractive force constant, 

),( tt yx  is the target position, and td denotes the 

Euclidean distance between the robot and the target.  

III. The total force 

The total force is determined as the sum of the 

repulsive and attractive forces. The total force in static 

environment is derived from following equation: 

rat FFF   (4) 

The above force is used for avoiding local static 

objects while moving toward the target. If a collision is 

predicted, the repulsive force of dynamic object is added 

to the total force and the resultant force is used for 

navigation. Definition of repulsive force of dynamic 

objects denoted by mF and the required steps are 

explained in details in the next section. 

 

mtf FFF   (5) 

The direction of fF is used as steering rate command. 

In static environment, mF is equal to zero; in the other 

words fF  and tF  are the same. Let   shows direction 

of fF . If robot direction is denoted by , angular 

velocity can be given by: 

)(   sk  (6) 

In which, sk is the steering constant whose dimension is 

1s . This constant is set as the inverse of the sampling 

time. 

3. Escaping Algorithm: A Strategy for Navigation 

in Dynamic Environment 

In static environment, the mobile robots can reach the 

target by using repulsive forces of static objects and 

attractive force of the target. However, it needs to 

perform four steps sequentially, to move in dynamic 

environment safely. These steps are as follows: moving 

objects detection, motion prediction, collision detection 

and velocity planning for obstacle avoidance. These sub 

programs are executed within the Simultaneous 

Localization and Mapping (SLAM) loop and use the grid 

map obtained from SLAM in their calculations. Each sub 

program is explained in the following sections with more 

details. 

3.1. Moving Object Detection 

Moving object detection is one of the most important 

parts of planning in dynamic environment. The objective 

is to classify observations as static or dynamic. 

Researchers developed several methods for this 

classification. One common method is Expectation 

Maximization Algorithm (EMA) [28], [29]. EMA is a 

two steps maximization process which solves 

incomplete data optimization problem [30]. Another 

method is sample-based variant of probabilistic data 

association filter. This method filters dynamic 

observations like human and results robust scan 

matching [31]. Besides, non-probabilistic methods are 

also developed. For example, [32] suggested a simple 

rule for classification. This method is extended for grid 

map and is used for dynamic observation mapping in this 

paper. 

In this paper a three-state map is generated and used 

for dynamic object detection.  The three-state map has 

similar structure to grid map and represents environment 

by set of cells. Each cell in this map can be labeled as 

free, occupied or unknown.  A reading is associated to 

dynamic object if it locates in a free cell. The three-state 

map is generated by following formula in each SLAM 

loop: 
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In the above relation, ),( jicd  shows the cell ),( ji

in three-state map. The values of minc  and maxc  are 

tuned practically. Using three-state map, observations 

are divided to dynamic and static. Static observations are 

used in gird map, while dynamic observations are 

predicted and special strategy (EA) is used to avoid 

them. Please note that several sequential dynamic 

observations refer to one moving object because moving 

objects like human reflects several beams of laser to the 

robot. As a result, it is required to group sequential 

dynamic readings. The center of each group is used as 

pose of dynamic object and the distance between center 

and dynamic border is considered as obstacle radii, obsR

. 

3.2. Motion Prediction 

In this context, a set of Kalman filters is defined. Each 

Kalman filter predicts next poses and velocities of one 
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moving object. The state vector of each Kalman filter is 

defined as  TyyxxX  . The initial guess of 

state vector is set to  TX 0000  for all 

moving objects. As it can be seen, the constant velocity 

model is used to represent moving object movement. It 

is important to note that movement of moving obstacles 

especially human is unpredictable; however, the 

constant velocity model with noisy acceleration may be 

suitably used to predict this behavior [28]. The discrete 

space state equation is shown as follows: 
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In whichT , denotes the sampling time. Dynamic 

readings which obtained from previous routine are 

considered as new positions of moving objects. 

Therefore, the observation equation is as follows. 
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In Eq. (8) and Eq. (9), wn and vn  are process and 

observation noises. The variance of process noises have 

to be carefully tuned in practice to provide desire 

performance in tracking. The variance of observation 

noises is related to sensor properties and should be 

determined based on them. In each sensor range 

readings, observations are classified into static and 

dynamic. Dynamic observations are used for updating 

Kalman filters. Since there are several dynamic 

observations and moving object, nearest neighbor 

algorithm is used to match dynamic observations and 

obstacles. If there is not any observation for one moving 

obstacle, our algorithm only performs the prediction 

step. If this happens several times, it means that the 

obstacle moves out of the robot vision and it is not 

necessary to predict its motion anymore. As a result, the 

corresponding filter is eliminated. 

A Kalman filter is also used for the robot position and 

velocity prediction. The prediction of this filter is used 

for collision detection between the robot and the 

obstacles. Therefore, in each SLAM loop, the following 

set of Kalman filters is updated. 

 

   1,,1,,  NiZX
ikk   (10) 

In this equation, N  denotes the number of predictable 

moving objects, while the last Kalman filter is for the 

estimation of robot pose in future. By this means, N
may differ in each iteration, according to the number of 

visible dynamic obstacles. 

3.3. Collision Detection 

The set of Kalman filters and their predictions are used 

to find possible collisions. To perform that, each Kalman 

filter predicts the next poses and velocities of one 

dynamic obstacle up to max predictions time ( maxT ). 

Similar prediction is done for the robot. Moreover, 

suppose that dynamic obstacles and the robot can be 

modeled by circles with radius obsR  and robR  

respectively. In k th prediction step the distance between 

the robot pose and the obstacle is calculated. If this 

distance, denoted by d , is less than the summation of 

obstacle and robot radii, then the collision will probably 

happen. The distance is calculated between the robot and 

all moving obstacles in order to find all possible 

collisions. It is important to note that as prediction step 

increases, the uncertainty grows, as well. As a result, a 

confidence factor, denoted by conf , is defined and used 

in collision detection. The following condition holds if a 

collision is possibly happening: 

1),(  confobsrobconfk RRd   (11) 

 
Figure 1- Escaping Algorithm 

3.4. Velocity Planning for Obstacle Avoidance 

Navigation in dynamic environment using potential 

field method is widely studied in literature. In this 

method, the target exerts attractive force to the robot, 

while static and dynamic objects apply repulsive forces. 

There are different definitions for the repulsive and 

attractive forces. For example in [25] a moving target is 

considered and the repulsive and attractive forces are 

derived by supposing full knowledge of the target and 
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obstacle's positions and velocities. The final output of 

method suggested in [25] is a function of the target 

velocity and the relative positions between the obstacles, 

the target and the robot. Similarly, by considering full 

knowledge about moving objects and the target, in [24] 

relative distance and velocity between the robot and the 

obstacle are used in repulsive force definition. The 

attractive force is defined based on relative distance and 

velocity between the robot and the target. One key 

problem of this method is that they need exact 

knowledge of position and velocity of dynamic obstacle 

and the target. However, this is an unrealistic assumption 

as none of them is known in practice. 

In this paper, Escaping Algorithm is suggest for 

obstacle avoidance. This algorithm is originated from a 

common behavior of human. A person usually intends to 

move in opposite direction in order to avoid colliding 

with a moving person. The same strategy can be used for 

mobile robot navigation. In our approach, the robot tries 

to moves in opposite direction if possibility of collision 

is detected. Consider Fig. 1; in this figure, obstacle 

direction in global frame is denoted by angle  . The 

projection of this direction in robot frame is a suitable 

direction to align a new repulsive force. In order to 

perform that, the velocity of obstacle is expressed in the 

robot frame by the following rotation. 
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In Fig. 1, tF  denotes the total force considering static 

environment. The obstacle velocity which is projected in 

the robot frame is used to define modifying force mF . 

This new force has the same norm as tF  and its direction 

is opposite to the obstacle direction in x , and parallel to 

it in y direction. Any time that possibility of a collision 

is detected, the modifying force mF  is added to the total 

force and the final force fF , is used for steering the 

robot toward the target. 

To address the safety of motion, consider Fig. 2. As it 

is mentioned before, it is supposed that the robot and the 

obstacle can be modeled by circles with radius obsR  and 

robR  respectively. It is similar to consider the robot as a 

point and enlarge the radius of obstacle to robobs RR  . 

As a result, the minimum turning angle for the robot is 

  to avoid collision. This angle is shown in Fig. 2 and 

may be derived by the following equation. 

 
Figure 2- Definition of safe turning angle 

 

)arcsin(
d

RR obsrob   (13) 

In the above equation, robR  is a known parameter and 

can be measured before test. obsR Is calculated as it is 

explained in section 3-A. to assure safety, if the turning 

angle )(   , is less than , the turning angle   is 

considered for the robot steering. 

 

4. Results 

In this part the simulation and experimental results of 

using EA in dynamic environments are presented. It is 

important to note that navigation by using force field 

family suffers from trapping in local minima. This 

problem occurs when the robot direction differs more 

than 90 degrees off target or fF  is equal to zero. 

2/   (14) 

  0fF  (15) 

Researchers develop several recovery methods to 

encounter local minimum problem. For example 

recovery methods based on electromagnetic field and 

modification of repulsive potential functions are 

suggested in [33] and [24] respectively. One of the most 

popular recovery methods is Wall Following Method 
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(WFM) which is suggested in [5]. In this context, WFM 

is used for mobile robot navigation to avoid trapping in 

local minima. 

 
Figure 3- The global map in which the robot reads observation 

4.1. Simulation Results 

In this section, simulation result of using EA in a 

dynamic environment is described. For simulation, 

seven dynamic objects are considered whose positions 

and motion directions are randomly selected. The robot 

does not have any prior knowledge about moving objects 

and their paths are estimated by Kalman filter. The robot 

obtains its observation from global map shown in Fig. 3. 

In this figure, the start point, the target point and seven 

dynamic objects are shown. The robot navigates from 

the start point to the target point successfully, provided 

that it does not collide with static and dynamic objects 

and it reaches the target. Through different tests, it is 

possible that several collisions are detected at some 

occasions by collision detection algorithm. In these 

situations, our algorithm considers only the nearest 

obstacle. The reason is that the nearest obstacle is more 

dangerous than others and hence the danger of it should 

be removed first. After eliminating the nearest danger, 

the next hazardous collision is considered. 

Fig. 4 shows one of the several simulation tests and it 

is selected because it shows different aspects of EA 

algorithm. Through moving from the start point to the 

target point, the robot builds the map of environment 

incrementally and localizes itself simultaneously in 

SLAM loop as it is shown in Fig. 4 (a)-(f).  As it can be 

seen in this figure, the robot starts moving to the target 

in (a). The wall 0w  bans the robot path. In this point the 

wall following method is activated to preserve the robot 

from trapping in local minima. As a result of this 

method, the robot follows wall 0w . Continuing its 

movement in wall following, the robot faces a moving 

object in (b). Here, first collision detection algorithm 

predicts a possible collision and then EA is activated. 

The modifying force is executed on the robot and it 

causes that the robot moves in opposite direction of the 

moving object. When the threat of collision is removed, 

the robot turns to the target in (c). Due to the absence of 

dynamic obstacles and the good alignment of the robot 

toward the target, the robot continues its path to the 

target in (d) by potential field method (since in this step, 

the environment is static). However, appearance of 

another moving object in (e) and the possibility of 

collision cause that our EA algorithm is activated again 

and the robot tries to avoid the obstacle by turning it. 

This movement is depicted in (f). Again, by disappearing 

dynamic obstacles, the robot uses potential field method 

to reach the target in (f). 
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Figure 4- The robot path in dynamic environment using Escaping Algorithm (EA) 

Figure 4 shows only one of several simulation tests. 

Due to the fact that moving objects are located and 

directed randomly, almost all scenarios have been tested 

on the robot. These set of simulations provides us 

enough assurance to implement this algorithm in the 

following real time experiments. 

4.2. Experimental Results 

EA for navigation in dynamic environment is 

implemented on KNTU Mellon mobile robot. The 

mobile robot perceives environment through a laser 

range finder whose maximum range reading is 8 meter. 

The laser scan data is used for map building in a SLAM 

environment. The ego motion estimation is done by 

well-known ICP algorithm [34]. To achieve more 

accurate result in the robot localization, the odometry 

information by encoders mounted on two wheels, serves 

as the initial guess for ICP algorithm. A computer with 

core i5 processor is used for online execution of the 

algorithm. The algorithm contains a loop for 

simultaneous localization and mapping (SLAM) which 

contains the robot navigation routine. For the control of 

Mellon mobile robot two commands are prompted, 

namely the velocity of the right and left wheels, denoted 

by r , and l , respectively. These velocities are easily 

obtained by linear transformation of linear and angular 

velocities as bellow: 
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where, r  and b  denote radii of wheel and wheel base, 

respectively. Different methods are suggested by 

researchers [25], [18] for linear velocity definition. In 

this context, since fast performance of the mobile robot 

is desired, it is good that the mobile robot moves as fast 

as possible. However, it should start deceleration before 

an obstacle appears in its path in order to avoid collision. 

Hence, it is suitable that the mobile robot moves with its 

maximum linear velocity until it reaches the region that 

should decelerate to stop completely near an obstacle. 

Hence, 
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In Eq. (17), 
mind  is the minimum range reading in 

range scanning and effd  is the distance passed by the 

robot when it decelerates from maximum velocity to 

zero.  

 

In what follows, experimental result of using EA in 

dynamic environment is given. In this experiment, the 

target is located in front of the robot with a relative 

distance of m4 , while the robot tries to reach target with 

a distance less than cm30 . In the terms of static 

environment, the robot goes straight to the target until it 

approaches static obstacle and tries to avoid it. However, 

the robot motion in dynamic environment is different. 

The dynamic scenario is run twenty two times and the 

result of one of them is shown in Fig.  5.

 

 

 
Figure 5- Experimental results of Escaping Algorithm (EA) in a real dynamic environment 

To examine the effect of dynamic environment, two 

moving objects approach the robot from the left. The 

robot tries to find a collision free path for safe 

navigation. As indicated in Fig. 5 and in part (a), the 

robot starts moving toward the target, while in (b) a 

moving obstacle appears and in (c) a collision possibility 

is detected. In (d) the robot turns left to avoid collision 

and again in (e) it moves back toward the target. 

Moreover, in (f) another collision possibility is detected 

and the modifying force is added to the total force, and 

hence, the robot turns to the left to avoid collision in (g). 

Finally, in (h) it reaches the target. Robot path using EA 

in this experiment can be observed in more detail in Fig. 

5. From the promising results observed in the set of 

twenty two experiments, we may conclude that EA 

algorithm is suitable to be used in further development 

of autonomous robots. 

4.3. Probabilistic Velocity Obstacle: A Method for 

Comparison 

Velocity Obstacle (VO) method first introduced in 

[12] and supposed deterministic knowledge about the 

velocity of obstacles to produce control inputs for 

navigation. This method was extended to probabilistic 

framework in [13] and is used in this paper for the sake 

of comparison. The idea is describing all velocities in the 

robot frame and finding those velocities which yield to 

collision in a predefined time horizon. The Collision 

Cone roCC of the robot r relative to the obstacle o , is 

the set of all relative dangerous velocities 

)( orr vvv 


 which finally cause a collision: 







 





 








 tjvytivxttvCC rrrrhrro


,,0|  (18) 

In which, ht  shows the time horizon, and   denotes 

any type of obstacle (dynamic or static). Any velocity is 

safe for the robot if the relative velocity does not belong 

to the collision cone. To compute the probability of 

collision )( Rcoll VP  of the robot velocity, all the 

possible velocities of obstacles have to be considered. 

Since in this paper Kalman filter is used to predict next 

poses and velocities of dynamic obstacles, the estimated 

state of dynamic object and its relevant covariance 

matrix is used to compute the probability of collision. To 

obtain permitted velocity for the robot, two constraints 
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are considered: minimizing the risk of collision and 

reaching the goal position. 

  rgoalr vxkrxvU ,,1dsit)(   (19) 

)()( rbreakhrsafe vTtvT    (20) 

Equation (19) calculates the distance between the 

robot next pose and the goal position applying velocity 

rv  to the robot. A velocity can be applied to the robot 

for the time interval ht , if the robot does not collide with 

any object up to safeT ; as it can be seen in Eq. (20), safeT  

contains the required time for deceleration from 
rv  to 

zero which is )( rbreak vT . 

Minimizing the distance between the robot and the 

goal position yields to high velocities and thus, increases 

the risk of collision. In other words, these two cost 

functions act reversely.  PVO navigates in the following 

order: First, velocity with maximum utility is 

considered. Second, the collision time collisionT  for the 

selected velocity is calculated. Third, the following 

equation is evaluated: 

    
collisionrsafe TvT )(   (21) 

If Eq. (21) holds, it means that a collision will be happen 

for the selected velocity. As a result, this velocity is 

unsafe for the robot. Forth, until finding a safe velocity, 

iteration will be done.  

There are some problems with PVO. One of them is 

trapping in local minima. The author in [13] mentioned 

that in the presence of local minima, some optimization 

parameters are considered. However, the recovery 

method is not mentioned in either [13] or [12]. The 

velocity searching space is the second problem of this 

method. The complexity of computation grows with the 

size of velocity sampling set. The mentioned issues limit 

the performance of PVO in complex scenarios and in the 

real word applications. 

4.4. Escaping Algorithm vs Probabilistic Velocity 

Obstacle 

To validate Escaping Algorithm and demonstrate its 

performance, Probabilistic Velocity Obstacle (PVO) 

method is implemented and tested through simulation 

tests. The global map shown in Fig. 6 is used for testing 

mentioned algorithms in both dynamic and static forms. 

For dynamic scenario, four moving objects are located 

and directed randomly. Both EA and PVO were 

simulated 20 times for static and dynamic environment 

and the reporting results in Table I shows the average 

value of them. 

 
Figure 6- Complete simulated environment 

Our study analyses the performance of EA and PVO 

from two important aspects. The first one is the number 

of iterations required to complete the mission and the 

second one is the complexity of algorithm. Here, we 

analysis the first metric and in the next subsection the 

complexity issue is extensively discussed. 

In our study we found that EA algorithm terminates its 

mission in smaller number of iterations than PVO. In 

dynamic environment, EA takes 165 steps in average to 

finish its task while this value for PVO is 173. While EA 

algorithm produces continuous values for linear and 

angular velocity, in PVO the velocity is discretized. 

Even though it is possible to assume smaller sampling 
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interval for velocity, it causes the complexity grows up 

polynomially. Assuming a reasonable value for velocity 

intervals, the selected velocity differs from the optimal 

value and hence, the required number of iteration is 

larger than EA. Similarly for static environment, the 

number of iterations of PVO is more than EA. Please 

note that in static environment EA reduces to potential 

field method. The required number of steps is reported 

in Table 1. 

 
Table 1- Performance analysis of Escaping Algorithm (EA) and Probabilistic Velocity Obstacle (PVO) in static and environment 

 EA PVO 

Steps Running 

Time (s) 

Step/Running 

Time 

Steps Running 

Time (s) 

Step/Running 

Time 

Static Environment 116 25.63 0.221 167 38.29 0.229 

Dynamic Environment 165 36.25 0.220 173 39.756 0.229 

 

 

4.5. Complexity Analysis 

The computational time complexity of EA is 

    2

anO  (22) 

In which an stands for the size of the active window in 

force field method. The complexity of PVO grows with 

the size of control space sampling set. Let's show the size 

of control space sampling set with vn . Since in this paper 

a planar robot is assumed, the control input has two 

components:  Tyx vv ,  and they will be selected from 

vv nn   space. Besides, PVO needs to check next poses 

of the robot for the selected control input and defined 

time horizon. Up to 







 

scale

hor

d

tvv )(
max  grids with 

size scaled  will be check for each selected velocity. 

Hence, the overall complexity of PVO is: 

    




















 


scale

hor
m

d

tvv
nO

)(
max2  (23) 

Table 2 shows the considered parameters in EA and 

PVO. For PVO as it is mentioned in [13], only integer 

values for the robot velocity is considered. Besides, s5  

is selected as the time horizon as it is in [13]. Using these 

values, the complexity of EA is extremely lower than 

PVO and it is in compliance with the reported values in 

Table I. The concept of “Step/Running time” is a rough 

measure of complexity in the absence of mathematical 

analysis of complexity. Here, our measured values 

confirm that the complexity of EA is less than PVO and 

it makes EA suitable for online implementation.  

It is possible to choose some of PVO parameters such 

that it has lower complexity. It can be done by 1- 

decreasing number of control input samples and 2- by 

reducing the time horizon. By choosing option 1, the 

precision of control input selection decreases and may 

result to improper results in the term of obstacle 

avoidance and running time. Decreasing time horizon in 

option 2 is not suitable since this enlarges the danger of 

collision. Hence, mindful selection of the variables is a 

must to have the desired behavior. 

 
Table 2- Selected Parameters in Escaping Algorithm (EA) and Probabilistic Velocity Obstacle (PVO) 

EA PVO 

an  vn  rv  
ov  ht  

31 21 -10< ·<10 -10<·<10 5 

 

 

5. Discussion and Conclusion 

This paper deals with two challenging issues in the 

navigation problem. First, the method introduced in this 

paper provides solution for handling unknown 

observations of dynamic environment and determining 

the source of observations. This is achieved by defining 

the three-state map and categorizing data into static and 

dynamic. As dynamic obstacles move, the trajectory of 

them is required to completely describe their motion 

through time. Hence, Kalman filter is used to track and 

predict the dynamic obstacle motions. The motion 

prediction of dynamic obstacles helps us to address the 

second challenging issue and that is using Escaping 

Algorithm strategy for navigation in dynamic 

environment. As it is mentioned before, EA is modeled 

based on force field approach. EA concept originates 
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from the common behavior of human; it is a frequent 

behavior for us to turn another person in the opposite 

direction of his movement to avoid collision. 

The performance of EA is checked under different 

metrics. First, several simulation tests in several 

environments with different number of robots are 

checked. Some of the considered environments are U  

shape environment to check the performance of the 

system in local minimum situations. Then, the proposed 

method was implemented on Mellon platform to assure 

the performance of the algorithm in the real 

implementation. After that, EA is compared to 

Probabilistic Velocity Obstacle method in the required 

number of steps for finishing the task and the complexity 

of computation. Our results show that using typical 

parameters in PVO, our algorithm has lower complexity 

and smaller time for completing the mission. 

To compare PVO and EA fairly, instead of assuming 

the velocity and trajectory of dynamic obstacle as a 

priori, which is one of the basic assumptions in PVO, we 

predicted them by Kalman filter. This helped us to 

evaluate two algorithms neutrally. However, 

substituting the prediction values instead of exact values 

caused some problem in PVO. Due to use of imperfect 

knowledge about moving obstacles, PVO failed in 

situations that the prediction precision is not good 

enough. Similarly, EA may fail in a situation such that 

moving objects start their motions in a close vicinity of 

the robot and Kalman filter does not predict their motion 

precisely. 

Even though the performance of EA is checked 

through different scenarios, the next step is providing 

concrete stability analysis of the proposed framework 

and finding the exact conditions for performance 

guarantee. Another possible direction of future work is 

developing this method for navigation of swarm of 

robots toward their goals considering the global and 

limited communication links. 
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