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 In this paper the problem of 3D scene and object classification from depth data is 

addressed. In contrast to high-dimensional feature-based representation, the depth 

data is described in a low dimensional space. In order to remedy the curse of 

dimensionality problem, the depth data is described by a sparse model over a 

learned dictionary. Exploiting the algorithmic information theory, a new 

definition for the Kolmogorov complexity is presented based on the Earth 

Mover’s Distance (EMD). Finally the classification of 3D scenes and objects is 

accomplished by means of a normalized complexity distance, where its 

applicability in practice is proved by some experiments on publicly available 

datasets. Also, the experimental results are compared to some state-of-the-art 3D 

object classification methods. Furthermore, it has been shown that the proposed 

method outperforms FAB-Map 2.0 in detecting loop closures, in the sense of the 

precision and recall. 

1. Introduction  

The two problems of 3D scene and object 

classification have received a great amount of attention 

from computer vision and robotic communities. The 

visual scene or object detection is performed using 

feature-based representation of camera images. 

Distinctive properties extracted from images, such as 

shape, color and textures are employed in visual 

detection. As the world is 3D in nature, the depth 

information should be used in the object detection 

algorithms. The 3D scans are made available as the 

observation of sensors such as stereo camera, Lidar or 

Microsoft Kinect. 

Various descriptors are presented for representation 

of colour, shape and depth information in the context of 

3D scene or object recognition. A shape descriptor is 

presented in [1], where an ensemble of angle, area and 

distance shape functions is employed in construction of 
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an object descriptor. The depth information is used in [2] 

in order to construct a depth kernel descriptor where 

models the size, 3D shape and depth edges in a single 

framework. Another shape descriptor is expressed in [3] 

for classification of 3D objects observed by a Kinect 

camera using a database of 3D models. Detection of 

similar places is known as loop closure detection in the 

Simultaneous Localization and Mapping (SLAM) 

problem. Conventional feature-based representations are 

usually employed for loop closure detection, such as 

training a classifier from extracted features [4] or using 

Bayesian filtering for loop detection from bag of visual 

words [5].  

Expressing 3D scenes or objects by means of 

descriptors, results in a high-dimensional representation 

which suffers from the so called curse of dimensionality 

problem [6]. In order to remedy these problems, in this 

paper, a proper classification method based on the depth 

data is presented. The proposed approach is developed 
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such that it works in a low-dimensional space, based on 

range image data without training or derivation of 

distinctive characteristics from all 3D scans. 

The paper is organized as follows. The next section 

briefly reviews some related works. Some preliminaries 

about sparse modeling of images based on a parametric 

dictionary and algorithmic information theory, are 

provided in section 2. Section 3 is devoted to the 

description of the proposed approach. Finally, section 4 

is dedicated to the experimental results, which is 

followed by the concluding remarks. 

2. Preliminaries  

In order to efficiently classify 3D scenes or objects, a 

similarity measure for low-dimensional representation 

of rage image observations is necessary. Two theories 

are employed in the process of definition of this 

similarity measure in a low dimensional space. The first 

is the sparse representation of data based on a learned 

dictionary and the second is the information theory. The 

sparse modeling of 2D images, generates a low-

dimensional representation of a natural 2D image, which 

is unique in an over-complete dictionary [7]. This 

approach achieves a very compact and efficient 

representation of salient features of a natural image. 

Here we apply this method to achieve a sparse 

representation for each range image as a linear 

combination of dictionary elements called atoms. In 

order to accomplish the object classification task, a 

proper similarity measure is required.  

A normalized distance measure is developed in 

algorithmic information theory [8], which compares 

general objects based on the complexity of their 

representations. In the following sections, the sparse 

modeling of images and normalized distance measure 

are presented in more detail. Based on these theories, the 

proposed object classification method is elaborated in 

section 3. 

2.1. Sparse Modeling 

The representation of 2D images as a sparse model 

based on a learned dictionary has received great amount 

of attention from image processing community [7]. 

Sparse and compact representation of an image using 

few atoms of an over-complete dictionary and also the 

flexibility of dictionary design, are some benefits of 

sparse modeling of images. A parametric mother 

function is employed for generation of dictionary atoms 

with a combination of 2D transformations such as 

translation, rotation and non-uniform scaling applied. 

Finally an iterative matching pursuit algorithm, [9] 

represents the input image approximately. The 

decomposition of image is expressed by a linear 

combination of most correlating atoms. Therefore, the 

only limitation to design such dictionary is spanning of 

whole Hilbert space of input images, while the 

generating function should be able to capture input 

image structure and salient features [7]. Some dictionary 

atoms are depicted in Fig. 1 indicating atoms of a leaned 

dictionary from a camera image. 

In conventional dictionary learning methods, a set of 

vectors 𝑥𝑖 ∈  ℛ𝑛 are employed and the following cost 

function is minimized in order to construct the dictionary 

𝐷 as: 

 

Figure 1: Atoms of a learned dictionary 
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𝑓𝑛(𝐷) =  
1

𝑛
∑ 𝑙(𝑥𝑖 , 𝐷)

𝑛

𝑖=1

 (1)  

where 𝑙(𝒙, 𝐷) is a loss function and represents the 

quality of dictionary 𝐷 in representing the vector 𝒙. 

Following the work of [10], 𝑙(𝒙, 𝐷) is defined as 

𝑙(𝒙, 𝐷) = min
𝛼

1

2
∥ 𝒙 − 𝐷𝛼 ∥2

2+ 𝜆 ∥ 𝛼 ∥1 (2)  

where 𝜆 is a regularization parameter. The 

optimization is accomplished over the two variables 𝐷 

and 𝛼. Since this optimization problem is not convex, the 

optimization is performed in two stages by keeping one 

variable fixed and optimizing over the other one, which 

results in a convex optimization problem. 

Even though the sparse approximation of images from 

an over-complete dictionary is an NP-hard problem [11], 

greedy algorithms find sub-optimal but yet efficient 

solutions, iteratively. One of the widely used greedy 

algorithms is the matching pursuit [9], in which, at every 

iteration the best matching atom is found by full 

dictionary searching. The matching pursuit converges 

exponentially, however, it cannot find the sparsest 

solution [7]. Therefore, the Orthogonal Matching Pursuit 

(OMP) algorithm [11] is used in this paper which solves 

the problem of finding optimal sparse solution [12], [13]. 

The OMP algorithm, initially assigns the input image 

𝐼𝑠 to the residual 𝑅0. 

𝐼𝑠 = 𝑅0 (3)  
Then iteratively at the 𝑖th step, OMP seeks the best 

matching atom 𝑔𝛾𝑖
 by finding the atom which possess 

maximum correlation with the residual 𝑅𝑖−1. 

𝛾𝑖 = arg max
𝛾

| < 𝑅𝑖−1, 𝑔𝛾

> | 
(4)  

In this relation the defined inner product in Hilbert 

space ℋ is denoted by the operator <. , . >. The 

contribution of the selected atom is removed from the 

residual by orthogonal projection of 𝑅𝑖−1 on to the span 

of selected atoms {𝑔𝛾𝑖
}, where 

𝑅𝑖 = (𝐼 − 𝑃𝑖)𝑅𝑖−1 (5)  

represents the orthogonal projection of 𝑠𝑝𝑎𝑛{𝑔𝛾𝑖
} by 

𝑃𝑖 . After 𝑁 iterations, the input image 𝐼𝑠 is expressed by 

a linear combination of the selected atoms. 

𝐼𝑠 = ∑ < 𝑅𝑖 , 𝑔𝛾𝑖
> 𝑔𝛾𝑖

+ 𝑅𝑁

𝑁−1

𝑖=0

 (6)  

It is observed that the approximation error decays 

exponentially and the algorithm is terminated after 𝑁 

steps to represent the input image as a sparse model or 

until the norm of the residual becomes lower than a 

specified threshold. After 𝑁 iterations, the OMP 

algorithm represents the input image approximately as a 

linear combination of most correlating atoms. The 

approximate linear expansion of input image 𝐼𝑠 

expressed by 

𝐼𝑠 ≈ ∑ < 𝑅𝑖 , 𝑔𝛾𝑖
> 𝑔𝛾𝑖

+ 𝑅𝑁

𝑁−1

𝑖=0

= ∑ 𝜉𝑖𝑔𝛾𝑖

𝑁−1

𝑖=0

 

(7)  

which is an efficient unique image representation in a 

low dimensional space which has application in image 

and video coding [14], and image transformation 

estimation [15]. The approximate spare model captures 

the salient geometrical features of input image with few 

atoms of a parametric dictionary. 

The extracted sparse models of range images shall be 

compared for finding similar objects which is the main 

purpose of this paper. The next section is dedicated to 

the Kolmogorov complexity and Normalized 

Compression Distance. These theories are used in 

development of complexity based representation of 

range images and are discussed in section 3. 

2.2. Algorithmic Information theory 

The algorithmic version of information theory, 

estimates the information by lossless data compression 

which is successfully employed for content-based image 

retrieval [16] and feature extraction [17]. In contrast to 

the Shannon approach that assumes the objects are made 

by a known random source and represent entropy as 

average information, the algorithmic information theory 

represents objects as a symbol strings and defines the 

complexity in analogy to entropy. In algorithmic 

information theory, a string sequence 𝑋 is expressed as 

the required input to a universal computer 𝑈 which prints 

𝑋 on its output and stops. Also the complexity 𝐾(𝑋) is 

defined as the minimal length of any input for fixed 𝑈 

which prints 𝑋 to the output. It has been shown that the 

dependency of 𝐾(𝑋) to 𝑈 is weak and can be ignored 

when 𝐾(𝑋) is sufficiently large [18]. The conditional 

Kolmogorov complexity is shown by 𝐾(𝑋|𝑌) and 

defined as the length of a shortest program to generate 𝑋 

given 𝑌 as its input. 

The Kolmogorov complexity is not computable but 

may be approximated by a good lossless compression 

algorithm. Therefore, in practice the Kolmogorov 

complexity 𝐾(𝑋) is expressed as 𝐶(𝑋) which is the 

length of compressed file of 𝑋 description and 𝐶 is a 

compression algorithm. In fact, the compression 

algorithm estimates an upper bound for the Kolmogorov 

complexity. The comparison of two objects can be 

performed by measuring their common information. The 

amount of common information between two object 

descriptions is accomplished by the normalized 

compression distance metric [19]. The 𝑁𝐶𝐷 is 

mathematically expressed as 
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𝑁𝐶𝐷(𝑋, 𝑌)

=
𝐶(𝑋𝑌) − min {𝐶(𝑋), 𝐶(𝑌)}

𝑚𝑎𝑥 {𝐶(𝑋), 𝐶(𝑌)}
 

(8)  

 

where 𝐶(𝑋𝑌) is the length of compressed file 

containing the concatenation of 𝑋 and 𝑌. The 𝑁𝐶𝐷 is a 

metric with 𝑁𝐶𝐷(𝑋, 𝑋) = 0 for similar sequences and 

𝑁𝐶𝐷(𝑋, 𝑌) ≤ 1 for all pairs (𝑋, 𝑌). When 𝑋 and 𝑌 are 

similar and share a great amount of information, their 

concatenation is compressed much more than the 

situation of comparing two dissimilar string sequences. 

Therefore, the 𝑁𝐶𝐷 value gets close to zero. In contrast, 

the concatenation of two different string sequences can 

be compressed so much, resulting in a 𝑁𝐶𝐷 value near 

to one. In order to compute 𝑁𝐶𝐷, any compression 

algorithm such as gzip, bzip2 or PPM can be used. The 

next section presents the proposed method which is 

constructed from complexity based representation of 

range images. The object classification is accomplished 

by comparing these representations using 𝑁𝐶𝐷. 

3. Proposed System 

In this section a similarity measurement approach is 

developed for 3D scene or object classification from 

range images. As it is shown in the flowchart given in 

Fig. 2, range images are acquired as input sensor 

observations. Then, a sparse model for each range image 

is constructed iteratively, from a learned dictionary using 

orthogonal matching pursuit algorithm (OMP). The 

dictionary is learned offline, containing learned patches 

known as atoms. The result of this step is the sparse 

model of the acquired range image, composed of a linear 

combination of atoms. This representation has a lower 

dimension in relation to conventional methods such as 

feature-based representations.  

In order to use the 𝑁𝐶𝐷 as a normalized similarity 

measure, a representation is constructed from the range 

image sparse model, involving its structure complexity. 

The Kolmogorov complexity of this representation is 

proportional to the number of atoms used in sparse 

model and their geometrical structure. Employing the 

complexity based representation, the sensor 

observations are compared according to their 

complexity. In what follows, different parts of the 

proposed method are explained in more details. 

3.1. Earth Mover’s Distance 

The EMD originally has been used for image retrieval 

[22] and is well designed for comparison of signatures. 

The EMD describes the distance between two 

distributions as the minimum cost of transforming one 

distribution to another by solving the well-known 

transportation problem. Considering each distribution as 

a pile of earth, the EMD is equal to the minimum 

required amount of work to fill holes by moving earth. 

 

 

 
Figure 2: The overall processing units of the proposed scene/object 

classification approach. 

 

Consider two signatures as 

𝑃 = {(𝑝1, 𝑤𝑝1
), … , (𝑝𝑚, 𝑤𝑝𝑚

)} (9)  
𝑄 = {(𝑞1, 𝑤𝑝1

), … , (𝑞𝑚, 𝑤𝑞𝑚
)} (10)  

where 𝑝𝑖  and 𝑞𝑖 are the cluster representative while 

𝑤𝑝𝑖
 and 𝑤𝑞𝑖

 indicate the width of each cluster. 

Furthermore, the cost matrix 𝐶 = [𝑐𝑖𝑗] is defined as the 

cost of moving a unit of mass from the 𝑖th cluster of 𝑃 to 

the 𝑗th cluster of 𝑄. Then the EMD seeks the minimum 

flow 𝐹 = [𝑓𝑖𝑗] which minimizes the following cost 

function  

𝑊𝑂𝑅𝐾(𝑃, 𝑄, 𝐹) = ∑ ∑ 𝑐𝑖𝑗𝑓𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 (11)  

subject to the following constraints 

𝑓𝑖𝑗 ≥ 0       1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗
≤ 𝑛 

(12)  

∑ 𝑓𝑖𝑗 ≤ 𝑤𝑝𝑖

𝑛

𝑗=1

       1 ≤ 𝑖 ≤ 𝑚 

(13)  

∑ 𝑓𝑖𝑗 ≤ 𝑤𝑞𝑖

𝑚

𝑗=1

       1 ≤ 𝑗 ≤ 𝑛 
(14)  

∑ ∑ 𝑓𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

= min (∑ 𝑤𝑝𝑖

𝑚

𝑖=1

, ∑ 𝑤𝑞𝑖

𝑛

𝑗=1

) 

(15)  

After finding the optimal flow, the EMD is computed 

as the required work normalized by the total flow 

𝐸𝑀𝐷(𝑃, 𝑄) =
𝑊(𝑃, 𝑄, 𝐹)

∑ ∑ 𝑓𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1

 (16)  
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3.2. Complexity Based Representation of Sparse 

Model 

The normalized compression distance (𝑁𝐶𝐷) is a 

universal metric for comparison of general object 

descriptions such as music and genome data [20]. 

Unfortunately, the application of 𝑁𝐶𝐷 in image 

similarity measurement is not satisfactory [21], where it 

has been shown experimentally that 𝑁𝐶𝐷 cannot be 

universally applied to the images. In order to remedy this 

problem, we propose to use the EMD as Kolmogorov 

complexity of each sparse model. Estimating the 

Kolmogorov complexity of a model using a compression 

algorithm has some drawbacks such as sensitivity to 

repeated patterns and mapping of many representations 

to a fixed value in the complexity space. In other words, 

since a compression based complexity estimator is not a 

one to one mapping function, some problems arise in 

practice. The EMD has been widely used for distance 

measurement of histograms and feature descriptors. 

Since the EMD is not a normalized metric, we present a 

new definition for the Kolmogorov complexity based on 

the EMD in order to employ the 𝑁𝐶𝐷 as a normalized 

similarity measure. As mentioned before, the conditional 

Kolmogorov complexity 𝐾(𝑋|𝑌) is defined as the 

minimum length of a program that generates 𝑌 having 𝑋 

in hand. Assuming that the signatures 𝑃 and 𝑄 are 

derived from 𝑋 and 𝑌 respectively, the conditional 

Kolmogorov complexity can be defined as 

 

𝐾(𝑋|𝑌) =  𝐸𝑀𝐷(𝑃, 𝑄) (17)  

In this paper we substitute the signatures of 𝑃 and 𝑄 

by the sparse model of range images. Each model is 

expressed as a linear combination of learned dictionary 

atoms and the signature of each range image is equal to 

the set of atom coefficients. 

Also the complexity of 𝑋 and 𝑌 can be computed 

separately as  

 

𝐾(𝑋) =  𝐸𝑀𝐷(𝑃, {0}) (18)  

where {0} represents an empty signature with all 

cluster center and widths equal to zero. 

 

 

Figure 3: Various objects of the dataset 

 

 

Finally, having the Kolmogorov complexity of each 

sparse model computed, the 𝑁𝐶𝐷 as a normalized 

similarity measurement metric can be efficiently applied 

in order to perform classification task. The next section 

presents the experimental results of both 3D scene and 

object classification using the proposed approach. 

4. Experimental Results 

4.1. Object Classification 

In this section the experimental results are presented 

to verify the applicability and performance of the 

proposed method. Also, the experimental results are 

compared to some state-of-the-art classification methods 
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presented in [23]. In the first experiment a dataset of 300 

objects from 51 different categories is used [24], which 

some of them are shown in Fig. 3. The parameters of the 

proposed system are shown in Table 1. A dictionary of 

256 atoms is learned from some range images offline, 

which is shown in Fig. 4. Also, the range image of each 

object is resized to 96 × 96 and the corresponding 

sparse model is generated by OMP algorithm. In the 

category detection experiment, one object is randomly 

excluded from the dataset and used as the test object. The 

similarity of the test object is computed with other 

objects and its category is detected. 

 

Table 1: Proposed system parameters 

Parameter Value 

Number of dictionary atoms 256 

Number of sparse model atoms 20 

Range image resolution 96 × 96 

 

 
Figure 4: Leaned dictionary from range images of some dataset objects 

 

 

The result of 20 experiments is reported in Table 2. As it 

can be seen, the proposed method has a competing 

performance with the kernel descriptor based 

classification methods [2], where the pixel attributes are 

represented by match kernels. In the instance detection 

experiment, the leave-sequence-out approach is 

followed, where the system is trained on the object range 

images captured from angels of 30° and 60° and is tested 

on views got from the angel of 45°. As it can be seen in 

Table 2, the proposed method has good accuracy in 

relation to the kernel descriptor based methods. In 

addition, it can be concluded that using depth 

information for classification of objects is not sufficient 

especially in the case of instance recognition. 

 

4.2. Loop Closure Detection 

In addition to 3D object classification, the proposed 

method can be applied to the loop closure detection. A 

dictionary is learned from a subset of range images. Then 

a sparse model is constructed for each range image. The 

normalized measurement metric is used for detection of 

similar places. In this experiment, a challenging outdoor 

scene is selected for loop closure detection. The KITTI 

Sequence (00) [25] is captured by a stereo camera in a 

dynamic outdoor environment. The environment map 

and the traversed path are shown in Fig 5. It has 4541 

scans and the length of path is equal to 3.7𝑘𝑚. The 

original image resolution is 1241 × 374 which is down-

sampled to the size of 96 × 96 pixels. In order to have a 

fair comparison, the same depth images are used for loop 

closure detection in FAB-MAP 2.0 algorithm [4].  

 



International Journal of Robotics, Vol. 4, No. 2, (2015) A. Norouzzadeh, H. D. Taghirad, 28-35 

34 
 

 

Figure 5: The KITTI Sequence (00) dataset. The travelled path is indicated by green lines 
 

The output of both FAB-MAP 2.0 and the proposed 

method is a difference matrix indicating the pairwise 

similarity of depth images. A similarity threshold is used 

to accept or reject each loop closure candidate. The 

precision is the number of true detected loops divided by 

the total number of reported loops. The recall is achieved 

by dividing the number of true detected loops by the total 

number of actual loops. The precision-recall curves are 

generated by varying the similarity threshold.  

Table 2. Experimental results of object classification 

Method Category Detection Instance Detection 

Proposed method 78.2% 52.4% 

GradKDES 72.8% 40.1% 

LBPKDES 72.1% 33.5% 

SpinKDES 60.2% 33.1% 

SizeKDES 56.3% 25.2% 

The precision-recall curve of the proposed method 

and the FAB-MAP 2.0 algorithm, are shown in Fig. 6. 

As it can be seen, the proposed method has higher 

precision-recall performance in relation to the FAB-

MAP 2.0 algorithm. While the proposed method has 

achieved accuracy of 100% with the recall rate of 62%, 

the FAB-MAP 2.0 algorithm provides accuracy of 25% 

at the same recall rate. This means that the FAB-MAP 

2.0 algorithm has reported so many false loop closures 

which causes instability of the SLAM algorithm and 

inconsistency of the environment map. Therefore, 

according to the experimental results in a dynamic urban 

environment, it can be concluded that the proposed 

method outperforms the FAB-MAP 2.0 algorithm which 

makes it suitable for SLAM application. 

 
Figure 6: The precision-recall curve of KITTI Sequence (00). 

5. Conclusions 

In this paper a new approach is presented for either 

3D scene or object classification from range images, 

based on the sparse modeling of images and algorithmic 

information theory. While the state-of-the-art algorithms 

use high-dimensional feature-based representations, 

here we perform the classification task in low-

dimensional space. A sparse representation for every 

captured range image is constructed using a learned 

dictionary. Then a complexity based representation is 

generated from the range image sparse model by means 

of Earth Mover’s Distance (EMD). Then from the 

information theory a normalized compression distance 

metric is employed for similarity measurement. The 

objects with minimum complexity based distance are 

classified in the same group. Experimental results show 

efficiency and accuracy of the proposed method in 

comparison to some 3D object classification methods as 

well as in loop closure detection. 
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