
International Journal of Robotics, Vol.3, No.1, (2013)/M. A. Nekoui 

28 
 

 

Hybrid Control to Approach Chaos 
Synchronization of  

Uncertain DUFFING Oscillator Systems  
with External Disturbance 

 
Mohammad Ali Nekouia 

a- Faculty of Electrical Engineering, Department of Control Engineering, K. N. Toosi University of Technology, Tehran, Iran,. 
Manekoui@eetd.kntu.ac.ir  
 

A R T I C L E   I N F O  A B S T R A C T 
Keywords: 
Synchronization; Chaos; 
Linear quadratic regulation 
control; Sliding mode 
control; Neural network 
control; Hybrid control 

 This paper proposes a hybrid control scheme for the synchronization of two 
chaotic Duffing oscillator system, subject to uncertainties and external 
disturbances. The novelty of this scheme is that the Linear Quadratic Regulation 
(LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function 
Neural Network (GRBFNN) control are combined to chaos synchronization 
with respect to external disturbances. By Lyapunov stability theory, SM control 
is presented to ensure the stability of the controlled system. GRBFNN control is 
trained during the control process. The learning algorithm of the GRBFNN is 
based on the minimization of a cost function which considers the sliding surface 
and control effort. Simulation results demonstrate the ability of the hybrid 
control scheme to synchronize the chaotic Duffing oscillator systems through 
the application of a single control signal. 

 
1- Introduction 
Dynamic chaos is a very interesting nonlinear 
effect which has been intensively studied during 
the last three decades. Chaotic phenomena can be 
found in many scientific and engineering fields 
such as biological systems, electronic circuits, 
power converters, chemical systems, and so on [1]. 
Since the synchronization of chaotic dynamical 
systems has been observed by Pecora and Carroll 
[2] in 1990, chaos synchronization has become a 
topic of great interest [3-5]. Synchronization 
phenomena have been reported in the recent 
literature. Until now, different types of 
synchronization have been found in interacting 
chaotic systems, such as complete synchronization, 
generalized synchronization, phase synchronization 
and anti-phase synchronization [6-8], etc.  
In this study, a hybrid control scheme is applied to 
chaos synchronization. Two identical chaotic 
system such as Duffing oscillator have been 
considered as the master and the slave systems. The  

 
 
slave system has been subjected to model 
uncertainty and external disturbances. To achieve 
the presented goal, some control techniques such as 
LQR, SMC , GRBFNN and hybrid control have 
been designed. 
This paper is organized as follows. In section II, the 
dynamics of a nonlinear duffing system is 
explained. The synchronization problem for 
nonlinear duffing systems is described in section 
III. In section IV, the material and methods are 
explained. In this section, LQR control is designed. 
Also, SM control is designed. GRBFNN control and 
the learning algorithms of this controller are 
presented. Moreover, hybrid control for 
synchronizing of nonlinear duffing systems is 
presented. Finally, to show the effectiveness of 
these control methods for synchronization, 
simulations are presented in section V.  At the end, 
the paper is concluded in section VI. 
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2- Duffing Oscillator System 
Consider a second-order chaotic system such as 

well known Duffing's equation describing a special 
nonlinear circuit or a pendulum moving in a 
viscous medium under control [9]: 

 3
1 2 cosx px p x p x q t                      (1) 

where p , 1p , 2p   and q  are real constants . t  is 

the time variable and   is the frequency.  

Given the states 1x x and 2x x  , then the Eq. 

(1) can be rewritten as follow: 

 
1 2

3
2 2 1 1 2 1 cos

x x

x px p x p x q t




    




          (2)                                                            

This system exhibits complex dynamics and has 
been studied by [9]. The constant values of Eq. (2) 
are 0.4p   , 1 1.1p   ,  2 1p  ,  0.62q  and 

1.8  . 
Fig. 1 and Fig. 2 illustrate the irregular motion 
exhibited by this system and initial conditions 
of 1 2( , ) (1, 1)x x   . 

In the next section, the problem of synchronizing 
two identical Duffing system with different initial 
conditions is described. 
Notice that model uncertainty and external 
disturbances appear in the slave system. 
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Fig.1: Time series of 1x  and 2x . 
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Fig. 2: Phase plane trajectory of a chaotic Duffing oscillator 

system. 
 

3- Synchronization Problem   
Consider two coupled, chaotic gyro systems are 

as following: 

 
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where Ru is the control input, 1 2( , )f y y  is an 

uncertainty term representing the un-modeled 
dynamics or structural variation of the system is 
given in Eq. (4) and ( )d t is the time-varying 

disturbance. 
In general, the uncertainty and the disturbance are 
assumed to be bounded as follows: 

1 2( , )f y y     And ( )d t  . 

where  and  are positive constant values. 

The systems described in Eq. (3) and Eq. (4) 
correspond to the master system and the slave 
system, respectively, and the objective of the 
current control problem is to design an appropriate 
control signal )(tu  such that for any initial 

conditions of the two systems, the behavior of the 
slave converges to that of the master. Defining the 
state errors between the master and slave systems 
as: 

1 1 1

2 2 2

e y x

e y x

 
  

                                                      (5) 

Then, the dynamics equations of these errors can be 
determined by subtracting Eq. (3) from Eq. (4) as 
follow: 

1 2

2 1 2 1 2 1 2( , , , ) ( , , , ) ( , ) ( ) ( )

e e

e g y y t g x x t f y y d t u t 


     




 (6) 

 
4- Material and Methods 
4-1-Linear Quadratic Regulation Control 

This method determines the state feedback gain 
matrix that minimizes J in order to achieve some 
compromise between the use of control effort, the 
magnitude, and the speed of response that together 
guarantee a stable system. After linearization of the 
system: 

( ) ( ) ( ) ( ) ( )x t A t x t B t u t                                   (7) 

Determine the control effort )(tu as: 

( ) ( )u t kx t                                                        (8) 

And 1 Tk R B X , where X is obtained from 
Matrix Differential Riccati Equation (MDRE), 
MDRE is as follows: 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TX t A t X t X t A t Q t X t B t R B t X t      (9) 

So in order to minimize the performance index, 

0

1
( )

2
T TJ e Qe u Ru dt


                              (10) 

where Q and R are the positive definite Hermitian 
or real symmetric matrices. 



International Journal of Robotics, Vol.3, No.1, (2013)/M. A. Nekoui 

30 
 

Note that the second term on the right hand side 
accounts for the expenditure of the energy on the 
control efforts, the matrix of Q and R determine the 
relative importance of the error and the expenditure 
of this energy [10]. 
 
4-2-Sliding surface and sliding mode control 

Using an SM control method to synchronize the 
chaotic Duffing oscillator system, involves two 
basic steps; 
(1) Selecting an appropriate sliding surface such 
that the sliding motion on the sliding manifold is 
stable. 
(2) Establishing a robust control law which 
guarantees the existence of the sliding 
manifold 0)( tS even in the event of uncertainties. 

The sliding surface is defined as [11]: 

2 1( ) ( ) ( )S t e t e t                                       (11) 

where    is a real positive constant. The rate of 
convergence of the sliding surface is governed by 
the value assigned to parameter  . The first 
derivative of (10) with respect to time is: 

2 1( ) ( ) ( )S t e t e t                                          (12)  

Substituting the Eq. (6) into Eq. (12): 

1 2 1 2 1 2 2( ) ( , , , ) ( , , , ) ( , ) ( ) ( ) ( )S t g y y t g x x t f y y d t u t e t        (13) 

Define a Lyapunov function as: 

21

2
V S                                                            (14)  

Differentiating Eq. (14) with respect to time we 
have: 

V SS                                                               (15)  
Substituting Eq. (13) into (15): 

 1 2 1 2 1 2 2( , , , ) ( , , , ) ( , ) ( ) ( ) ( )V S g y y t g x x t f y y d t u t e t        (16) 

Let 

1 2 1 2 2( ) sgn( ) ( , , , ) ( , , , ) ( )u t S g x x t g y y t e t          (17)          

where    is a positive constant and    . Then 

SV                                                            (18)  

Since   , the reaching condition 

( 0SS  ) is always satisfied. Thus, the proof is 
achieved. An appropriate value of   is chosen not 

only to quicken the time of reaching the sliding 
mode motion which has a good robustness to the 
system uncertainties, but also to reduce the system 
chattering.Therefore, this implies that the sliding 
surface be chattering in a finite time and the SM 
controller is used for synchronizing the chaotic 
Duffing oscillator systems. Thus the error state 
trajectories converge to the sliding surface 0)( tS . 

 
4-3-GRBF Neural Network 

The GRBFNN can be considered as one layer feed 
forward neural network with nonlinear element. 
The GRBFNN output can perform the mapping 
according to: 





n

j
jjjjj mzGwzf

1

),,()(                             (19) 

where nT
n Rzzzz  ],...,,[ 21 is the input vector, 

njRmzG n
jjjj ,...,2,1,),,(   are the Gaussian 

radial basis functions, jm  is the mean value of the 

Gaussian function, Rj  is the spread of 

Gaussian function n is the number of neurons. 
Each Gaussian radial basis function can be 
represented by: 

2

2
exp),,( 
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
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jj
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GRBFNN can be used for synchronizing the chaotic 
Duffing oscillator systems. To achieve this goal, it 
is assumed that the output of GRBFNN is the control 
effort of the synchronization, then ftu )( . 

 
4-4-Learning Algorithm of GRBFNN 

The goal is to minimize the following cost 
function:  

1
( ) ( ) ( ) ( ( ) ( ))

2
TE k S k S k u k u k                  (21) 

where ( )S k  is the sliding surface that was 

described in the previous section. By using the BP 
algorithm, the weighting vector of the GRBFNN is 
adjusted such that the cost function defined in Eq. 
(21) is less than designed. The well-known 
algorithm may be written briefly as: 

( )
( 1) ( )

E k
w k w k

w
       

                     (22) 

where  and w  represent the learning rate and 

tuning parameter of RBFNN. The gradient of (.)E  

in Eq. (22) with respect to a weighting w  is:  
 

( ) ( ) ( ) ( )
( ) ( )

E k S k f k f k
S k u k

w f w w

   
 

  


      (23) 

 
where  

( )
( , , )

f k
G z m

w





 and
( )

1
S k

f







.Then, 

( )
( ( ) ( )) ( , , )

E k
S k u k G z m

w


                (24) 

Substituting the Eq. (24) into the (22): 
( 1) ( ) ( ( ) ( )) ( , , )w k w k S k u k G z m        (25) 

4-5-Hybrid Control 
The structure of hybrid control to synchronize the 

chaotic Duffing oscillator system is shown in Fig. 
3.The total control effort is computed as follows: 
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( ) ( ) ( ) ( ) (1 ( )) ( )
NNLQR SM GRBFu t u t m t u t m t u t           (26) 

where )(tuLQR  is the LQR control, )(tuSM  is the 

SM control and )(tu
NNGRBF is the GRBFNN control. 

The function )(tm allows a smooth transition 

between the SM controller and the GRBFNN 
controller, based on the location of the system 
state: 














c

d

Atetm

otherwisetm

Atetm

)(1)(

1)(0

)(0)(
                               (27) 

where the regions might be defined as in Fig. 4. 
 

 
Fig. 3: oscilator Structure of hybrid control to synchronize 

of chaotic Duffing system. 
 
The SM controller is used to keep the error states in 
a region where the neural network can be 
accurately trained to achieve optimal control. The 
SM controller is turned on (and the neural 
controller is turned off) whenever the system error 
states drifts outside this region. The combination of 
controllers produces a stable system, which adapts 
to optimize performance. 
 
5- Simulation results 

The parameters of chaotic Duffing oscillator 
systems are specified as follows: 

0.4p   , 1 1.1p   ,  2 1p  ,  0.62q  and 

1.8  , which, as shown in section 2, give rise to 
a chaotic state. 
 

 
Fig. 4: Controller regions. 

 
The initial conditions are defined as: 

1(0) 10x  , 2 (0) 1x  , 1(0) 5y  , 2 (0) 11y  . 

Also, an assumption is made that the uncertainty 
term, 1 2 1( , ) sin( )f y y y    and the disturbance 

term, ( )d t rand  are bounded by 

1 2( , ) 1f y y     and ( ) 1d t   , 

respectively. 
The simulation results are shown in Figures 5-17. 
Figs. 5, 8, 11 and Fig. 14 show time series of the 
master and slave states corresponding to their 
control methods. Figs. 6, 9, 12 and Fig. 15 show 
time series of synchronization errors corresponding 
to their control methods.  
Fig. 7 shows time series of LQR control effort. 
Figs. 10, 13 and Fig. 16 show time series of control 
effort and sliding surface corresponding to their 
control methods. Fig. 17 shows the time series of 
the sliding surface corresponding to hybrid control. 
The simulation results of hybrid control have a 
good performance in comparison to other control 
methods that were applied in this section. The 
simulation results of hybrid control confirm that the 
master and the slave systems achieve the 
synchronized states before 1 sec. Also, these results 
demonstrate that the system error states are 
regulated to zero asymptotically before 1 sec. 
In addition, it can be seen that the results of hybrid 
control have a good performance even though the 
overall system is subject to uncertainty and 
disturbance. 
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Fig. 5: Time series of the master and slave states with LQR 

control. 
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Fig. 6: Time series of synchronization errors with LQR 

control. 
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Fig. 7: Time series of LQR control effort. 
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Fig. 8: Time series of the master and slave states with SM 

control. 
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Fig. 9: Time series of synchronization errors with SM 

control. 
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Fig. 10: Time series of SM control effort and sliding surface. 
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Fig. 11: Time series of the master and slave states with 

GRBFNN control. 
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Fig. 12: Time series of synchronization errors with GRBFNN 

control. 
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Fig. 13: Time series of GRBFNN control effort and sliding 

surface. 
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Fig. 14: Time series of the master and slave states with 

hybrid control. 
 

0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

Time(s)

e
1

0 1 2 3 4 5
-20

-10

0

10

20

30

40

50

60

Time(s)

e
2

 
Fig. 15: Time series of synchronization errors with 

 hybrid control. 
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Fig. 16: Time series of hybrid control effort. 
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Fig. 17: Time series of sliding surface with hybrid control. 

 
6- Conclusion 

This paper presents a hybrid control scheme for 
the synchronization of chaotic Duffing oscillator 
systems characterized by system uncertainties and 
disturbances. This hybrid control scheme is highly 
robust and achieves a stable, controlled system 
despite the presence of uncertainties and 
disturbances. Simulation results of hybrid control 
have a good performance in comparison to other 
control methods applied in this paper. According to 
these simulations, the proposed hybrid method can 
be successfully applied to the synchronization 
problem of chaotic Duffing oscillator systems. 
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