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In this paper, stability analysis of walking gaits and robustness analysis are 
developed for a five-link and four-actuator biped robot. Stability conditions are 
derived by studying unactuated dynamics and using the Poincaré map associated 
with periodic walking gaits. A stable gait is designed by an optimization process 
satisfying physical constraints and stability conditions. Also, considering 
underactuation problem, a time-invariant control law is designed to track the 
stable motion of biped. Validation of proposed approach is achieved by numerical 
simulations. Moreover, the robustness of motion on the uneven surfaces and 
elastic contact model are investigated. 
 

 

1.  Introduction  

The design and motion control of bipedal robots are 
one of the challenging topics in the field of robotics 
and are recently considered by a great number of 
researchers and engineers. Bipedal walking robots 
can be divided into two broad classes. The first class 
is fully-actuated bipedal robots. In these bipeds, the 
control of bipedal walking robots is mostly carried 
out with methods based on tracking of temporal 
reference trajectories generally associated with the 
control of the Zero Moment Point (ZMP) [1,2]. The 
ZMP stability principal states that the biped will not 
fall down as long as the ZMP remains inside the hull 
of the foot-support [3].  
The second broad class consists of passive-dynamic 
walkers and limit-cycle walkers. Inspired by the 
completely passive walkers of McGeer [4], these 
robots forgo full actuation and allow gravity and the 
natural dynamics to play a large part in the generation 
of motion. They may be completely passive, or 
partially actuated [5].  
To achieve fast walking gaits, investigators are 
studied a walking mechanism as a compass like biped 
with point feet [6-8]. However, in this case, the 
stability criterion ZMP cannot be used and the control 
problem  
and stability analysis become more difficult. Control 
of walking gaits of these robots is a very interesting 
and simultaneously difficult problem. Important  

 
 

medical applications of bipeds with point feet include 
prostheses for the lower limbs and rehabilitation of 
statics balancing and walking. 
For these types, it is possible dynamically to stabilize 
their specific walking gaits. For instance, the 
convergence to a nominal cyclic motion is improved 
in [9], by changing the step length or the trunk 
orientation. The feedback linearization method is 
utilized to control the walking cycle during the single 
support phase for a novel nearly linear model in [10]. 
In [11], a partial feedback linearization has used to 
control the entire walking cycle including the single 
support phase (SSP) and double support phase (DSP). 
In [12], the existence of the limit cycles is studied for 
a special class of underactuated bipeds using 
differential flatness and controlled the biped robot 
off-line. Using the neural network to have a robust 
control for this type of bipeds is another method 
presented in [13]. In [14], the dynamical stability of a 
three-link biped is presented under a control law 
being finite time convergent. In [15] it is shown that 
it is possible to track in single support stable 
trajectories with internal stability by a suitable choice 
of outputs for a two-link robot and for a five-link 
robot. The Hybrid Zero Dynamics (HZD) has 
developed for planar biped walkers with a torso and 
one degree of underactuation in [16]. Controller has 
been designed based on the judicious choice of a set 
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of holonomic constraints that were asymptotically 
imposed on the robot via feedback control. This was 
accomplished by interpreting the constraints as output 
functions in which the number of constraints are 
equal to the number of inputs and then combining 
with computed torque method for control motion. 
However, in this method the motion converges to 
cyclic motion after several gaits (for instance 15 gaits 
in [17]) since the output constraints are only 
followed. In [18], using the sliding mode control only 
for the generalized coordinates of the lower body, a 
stable motion for upper body have resulted such that 
the robot converges to cyclic motion after 160 steps.  
In most of previous works, the biped motion 
converges to a cyclic motion after several gaits as 
presented in [17,18]. However, in this research work, 
an approach is proposed such that the biped 
converges to the cyclic motion with faster 
convergence. For instance, we will show in the 
simulation results the biped converges to cyclic 
motion after four gaits. 
 In this paper, a five-link biped robot with point feet 
is investigated. For this robot, there is no actuator at 
contact point foot and hence it is considered as one 
degree of underactuation system. As a result, it 
cannot track any arbitrary path and we define the 
joint trajectories parameterized in terms of a time-
scale function. The stability conditions of periodic 
orbits are then derived by analyzing the stability of 
unactuated dynamic model. Using minimization of 
mechanical work during motion, subjected to 
physical constraints and stability conditions, desired 
joint space trajectories are obtained. Furthermore, a 
time-invariant control law is developed in order to 
track the stable motion. Several simulations are 
accomplished to show efficiency of this approach. 
Also, robustness of motion on the uneven surface and 
a compliant model of walking surface are studied.  
The rest of paper is organized as follows. The 
dynamical model of the robot at hand and its 
equations of motion are presented in Section 2. In 
Section 3, we present a discussion of stability and 
optimization problem in order to design the stable 
gait. Motion control strategy and resolving 
underactuation problem are described in Section 4. 
Simulation results are presented in Section 5. In 
Section 6, we study robustness of motion on the 
uneven surfaces. The flexible contact model is 
presented in Section 7 and its simulation results are 
shown. Conclusions are presented in Section 8. 

2. Modeling 

The dynamic model of a biped robot with five links is 
shown in Fig. 1. It consists of a torso, two hips, and 
two identical legs where each leg articulated by a 
knee and without feet. The model assumes point feet 
with no actuation between the stance leg and the 
ground and full actuation at all other joints. Walking 
is taken place in the sagittal plane (the plane that 
divides the body into left and right halves).  
 
 

The stability in the frontal plane can be achieved with 
only frontal plane control actions [19]. Motion 
involved the single support phase where only the 
stance leg is on the ground and the impact phase 
where the swing leg hits on the ground. These two 
phases of the walking cycle naturally lead to the 
differential equations describing the dynamics during 
the single support phase and a discrete model of the 
dynamics of the impact phase. 

2.1. Single Support Phase Model 
In the single support phase, the end of the stance leg 
is acting as a pivot and thus there are five degrees of 
freedom. The angular coordinates of the shanks, 
thighs and torso are indicated in Fig. 1. Identical 
model is used for both legs and thus the legs are 
switched after each impact. The dynamic model 
during single support phase between two successive 
impacts can be derived using the Lagrange method. 
The equations of motion in the single support phase 
can be written as 
 

T

TkHk

Tθ ],,,[,]θ,θ,θ,,θ[
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Here, 55)( RqM  is the mass matrix and 55),( RqqC   

contains Coriolis and centrifugal forces. Also, 
5)( Rqg  is the gravity force vector and 45R B is a 

constant matrix for torque distribution. Two actuators 
are provided at hips and denoted by H  and T  also 

two actuators at the knee joints denoted by
1k

  and 
2k


. There is no any actuator at the end of legs. Hence, 
the number of actuators is less than the degrees of 
freedom and thus the robot is underactuated by one 
and matrix B has one column less than its row. This 
causes the dynamic model (1) is divided into 
unactuated and actuated dynamics. Their expressions 
are 
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Here, 
51R  B and 

54R  B  are orthogonal 
complement and pseudo-inverse matrices of B, 
respectively, i.e., 44

  IBB,0BB . The 

orthogonal complement B  can be chosen as 
],[ 41

  0B cb  where bc is a non-zero constant. Also, 

the pseudo-inverse B can be given as
TT BBBB 1)(   .  
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Fig.  1: Schematic of a five-link biped robot in sagittal plane 
 

Remark 1.  It may be noted that the kinetic energy of 
the robot is independent of the choice of world 
coordinate frame and thus it is independent of 1
because the joint angle 1  only fixes the world 
coordinate frame. 
 
2.2.  Impact Model 
At the end of the single support phase, the heel of the 
swing leg hits on the ground while the stance leg 
leaves the ground. On applying the principle of the 
angular impulse and momentum for a system of n 
bodies connected by revolute joints, one can 
determine the joint velocities after the impact in 
terms of the joint velocities before the impact [20]. In 
addition to modeling the change in state of the robot, 
the impact model accounts for the relabeling of the 
robot coordinates that occurs after each impact. The 
following hypotheses are used for the impact model.  
H1) Impact is considered as a plastic contact such 

that velocity of impact point is zero after hitting.  
H2) Joint angles before and after the impact remain 

the same while the angular velocities change 
instantaneously. 

H3) Impact is instantaneous and the stance leg lifts 
from the ground without interaction at the 
moment of impact. 

These assumptions imply total angular momentum is 
conserved [20]. Using the principle of the angular 
impulse and momentum, we express the velocity of 
the robot just after impact in terms the velocity just 
before impact without relabeling. 
In order to derive the angular velocity of links after 
impact, we consider five subsystems as follows 
SS1: Right leg, i.e., O1-O2. 
SS2: Right leg and right thigh, i.e., O1-O2-H. 
SS3: Right leg, right thigh and torso. 
SS4: Right leg, right thigh, torso, left thigh. 
SS5: The whole system. 
Now, we use the conservation of angular momentum 
for the five subsystems of the biped robot at impact 

moment as 




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 Here, 
2o

H is the total angular momentum of 

subsystem SS1 about 2O and H2H is the total angular 

momentum of subsystem SS2 about H. Also, H3H , 

3O
H and 

4O
H are the total angular momentum of 

subsystem SS3, SS4 and SS5 about H, 3O and 4O , 

respectively. 
Using (3), the joint rates after impact for the biped 
robot are given in terms of the joint rates before the 
impact as 

  qqΔq q


 )(                                                          (4) 

After impact, it is assumed that the swing leg 
becomes the new stance leg, so the coordinates must 
be relabeled. We can express the relabeling of the 
states as a linear, invertible transformation matrix E. 
The result of the impact and relabeling of the rates for 
the kth gait is then given as: 


  kkk qqEΔq q


 )(1                                                     (5) 

The joint angles do not change during the impact 
phase, so they are given after impact by permutation 
matrix in terms of the joint angles before impact as  

dEqq  
 kk 1                                                         (6) 

where d is a constant vector. Hence, the (k+1)th gait 
begins by the initial states (5) and (6).  

3. Gait Planning 
The problem of gait planning for biped robots is 
fundamentally different from the path planning for 
traditional fixed base manipulator arms. For gait 
planning of the biped robot with point feet, one has to 
consider stability condition during motion. The ZMP 
criterion cannot be used for this biped because of the 
point feet. Also, this robot cannot follow any 
arbitrary trajectory due to the underactuation problem 
and may fall on the ground for an arbitrary trajectory. 
In this section, a stability analysis is presented and 
then the gait planning is described for this 
underactuated biped robot.   

3.1.   Stability Analysis 
As mentioned in pervious section this biped is an 
underactuated system and the dynamics of system is 
divided into actuated and unactuated dynamics such 
that only actuated dynamic can be controlled using 
actuators. In this section, we obtain conditions to 
guarantee stable motion for this biped robot. To this 
end, we derive conditions that lead to make 
unactuated dynamics stable during motion.  
The first equation of (2) shows unactuated dynamics 
during single support phase.  
Theorem 1: If we define qMB  , the equation of 

unactuated dynamics during the single support phase 
can be written as 

)(1 q                                                                (7) 
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Proof: Having qMB  , the time derivative of   

is written as follows 

qMBqMB                                                   (8) 

Due to the fact that kinetic energy is not a function of 

1  and the form of B , we can deduce qMBC  . 

Hence, the equation of unactuated dynamics (i.e., 
first equation of (2)) is rewritten as 

0)(   qgB                                                        (9) 

Therefore, we obtain (7) if we define )()(1 qgBq  .    

If the generalized coordinates are given in terms of 
time trajectories and having 0)( t during motion, 

we can multiply (7) by scalar  and integrate the 
result thus obtained with respect to time to obtain 

)(t  as 

   dtttt
t

 
0 1

2

0

2 )())(())((2 qqMBq       (10) 

where, 0 is initial value of  . 

However, since there is not any actuator at 1o , the 

period of a half of gait cycle is unknown and thus one 
cannot obtain a time trajectory for all joints. 
Therefore, the right hand side of (10) cannot be 
evaluated and thus )(t cannot be determined from 

(10). To overcome this problem, we express the 
generalized coordinates in terms of a time-scale 
parameter s as ))(()( tst qq  in which )(ts  is a 

monotonic function and changes between 0 and 1 
such that the gait is started at 0s  and the swing leg 
hits on the ground at 1s . 
On the other hand, the initial value of   after kth 
gait is evaluated by the impact equation (5) as 
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Upon substitution of the time-scale trajectories into 
(11), we can rewrite (11) as 

 
  kk  1          (12) 

with 

)1()(

)1()()( 1
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Here,
ds

sd )(q
q  . Now we study the stability motion 

of the unactuated dynamic, i.e., (7), during motion. 
To this end, we consider (7) and (12) for the (k+1)th 
gait as the single support phase and impact phase, 
respectively and use the parameterized trajectories for 
the generalized coordinates.  
The complete model of unactuated dynamic during 
motion at (k+1)th gait  are given by using (7) and 
(12) as 















S

Sk

q
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
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
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Here, )1(1  sk , )0(10   sk  and 

 0)(,0)(
44

 qqq oo xyS  is the hyper plane in 

which the impact occurs (see Fig. 1). On the other 

hand, because there is no actuator at 1O , thus the 

biped can walk forward while the sign of the total 
angular momentum of system about 1O does not 

change during forward motion. We can obtain the 
total angular momentum of system about 1O by 

dividing   by bc. 
Therefore, the forward motion of this biped is 
guaranteed by 0s   qMB during single support 

phase. Now, we choose bc as a positive number and 
since )(ts is an increasing function ( )(ts is positive 

for forward motion), we can obtain a forward motion 
condition as follows 

100)s(  sqMB                                        (14) 

In the following, we study stability of dynamic model 
(13) by considering (14) during periodic motion. An 
important tool to analyze the stability of periodic 
orbit is Poincaré map where it replaces a continuous 
nth-order time system by a discrete (n-1)th-order time 
system [21]. Here in this research work, Poincaré 
map method is used to analyze the stability of the 
biped motion during periodic gaits. 
Since 0)( s , we can multiply the first equation of 

(13) by scalar   and integrate the result thus 
obtained with respect to s parameter. Hence, we write 
(10) in terms of time-scale s and then integrate with 
respect to s to get 

)( )( 2

2

0

2

1
ss

k
 


                                             (15) 

where , 

    d)()()(2)(
0 12   s

s qMB . 

Moreover, value   at the end of the single support 
phase should be more than its initial value at the 
beginning of this phase because of the kinetic energy 
loss during impact. This implies that 0)1(2 s to 

compensate the kinetic energy loss due to impact 
phase. 
Remark 2: The biped robot can complete a gait 
planned as function of time-scale parameter s, if and 
only if we have 0))((max 210

2

0 


s
s

 . 

The effect of the impact is also added into (15) by 
substituting 2

0  from the second equation of (13) as 

)()( 2

2

1

22

1 ssk                                              (16) 

Since the left hand side of (16) is a positive quantity, 
the right hand side of this equation should be also a 
positive quantity. On the other word, the following 
condition should be satisfy  

0))((max 210

2

1

2 


s
s

                                          (17) 

A walking motion is a periodic orbit during different 
phases. The Poincaré return map is an appropriate 
mathematical tool in order to analyze the stability of 
periodic orbits. Here, we intend to obtain a Poincaré 
map p such that it maps the impact surface in kth gait 
into the impact surface in (k+1)th gait, i.e.,

1:  kk SSp . Stability conditions are determined by 

stability analysis of the fixed points of this map.  
Theorem 2: Let the unactuted dynamics be in terms 
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of the variable   as defined in (13) during motion. 

Then Poincaré returns map of the unactuated 
dynamics 1:  kk SSp is defined by 

)1()( 2

2    kkp                                             (18) 

and the domain of definition for this map is given by 
 }0))((max|{ 210

2 


sD
skkp  

      (19) 

Proof: The unactuated dynamics (13) may be 
integrated over (k+1)th step and the reinitialization 
rule (the second equation of (13)) can be applied, the 
result thus is given as described in (16). Now, we 

choose the generalized coordinates in 1s   for 
Poincaré section S and rewrite equation (16) for this 
moment as 

)1(2

2

1    kk                                                 (20) 

where )1(2  s . Then, Poincaré map p is 

obtained from (20) such that 1 kk SS  as given in 

(18). Also, using (17), the domain of definition for 
this map is obtained as (19). 
The fixed points of this map should be studied for its 
stability analysis, A point ηכ א D୮ is said to be a 

fixed point of p if ** )(  p . Hence, the fixed point 

of p is given by (18) as 

1

)1(
2

2*







                                                            (21) 

ηכ א D୮ is an asymptotically stable equilibrium point 
of )(1 kk p   if and only if the eigenvalues of 

D஗pሺηכሻ, the Jacobian linearization of p at ηכ, have 

magnitude strictly less than one. Therefore, 12  

guaranties stability of Poincaré map p.   
Having 12   and * in the domain of definition 

with the fact that 0)1(2  , one can deduce that * is 

an asymptotically stable fixed point for map 

1)(  kkp   with domain pD . In other words, above 

discussion leads to the following corollary. 
 Corollary 1: There is a periodic gait in terms of time-
scale s, if the following conditions are satisfied. 
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1
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,1 2102

2

2

2 






s

s







                       (22) 

Note that the second part of (22) is derived by 
substituting (21) into (19). 
Thereby, we derived conditions (22) to guarantee the 
stable motion of unactuated dynamics during the 
single support and the impact phases based on 
Poincaré map. More precisely, if (22) can be held for 
a set of generalized coordinates, )(sq , then the 

unactuated dynamics is stable during motion. 
The aforementioned stability analysis has not 
accounted for the allowed friction cone at the support 
leg end. Therefore, we will add no slipping and no 
lifting of the stance leg constraints on the stability 
conditions.  
The tangential and normal reaction forces at the heel 
of the stance leg during single support phase are 

given, respectively, by  

),,()(
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qqq

qqq
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                               (23) 

where tm is the total mass of biped and g is the 

gravitational acceleration, also Gx and Gy are the 

horizontal and vertical accelerations of the center of 
mass of whole system, respectively. The relations for 
these accelerations can be determined by the second 
time derivative of 
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where )(qix and )(qiy  are the horizontal and vertical 

components of the center of mass of link i, 
respectively. Now, we assume that the biped robot 
follows the parameterized trajectories. Therefore, 
using chain rule formula, )(tq  and )(tq  are given in 

terms of parameter s by  

s(s)s(s)

ss)(
2 



qqq
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
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                                               (25) 

Moreover, 2s and s are obtained by substituting (25) 
into (16) and the first equation of motion described in 
(2), as  
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1
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Substituting (25)-(27) into (23), one can derive the 
heel reaction forces of the stance leg as 

sq
q

x
m

sq
q

x
qq

qq

x
msFF

i
i i

G
t

i
i i

G
ji

i j ji

G
ttt







































 

5

1

2
5

1

5

1

5

1

2

)(
       (28)








































 



 

gsq
q

y
m

sq
q

y
qq

qq

y
msFF

i
i i

G
t

i
i i

G
ji

i j ji

G
tnn





5

1

2
5

1

5

1

5

1

2

)(
  (29) 

The force of friction should be enough to prevent 
slipping. Therefore, necessary conditions to prevent 
lifting and slipping are given based on the law of 
Coulomb friction respectively as 

10
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0)(
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sFsF

sF

nst
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
                                (30) 

where s is the static coefficient of friction between 

the foot and the ground.  
The domain of Poincaré return map p is modified by 
including no slipping and no bouncing conditions 
(30) into (19) as 


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   (31) 

Therefore, the stability conditions of the unactuated 
dynamics (7) were obtained by Poincaré map method. 
In the next subsection, the gait planning of the biped 
is determined by imposing these stability conditions.  
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3.2. Stable motion planning with optimization 
The previous subsection has provided the conditions 
for the existence of a periodic motion for the 
dynamics model with impacts and established its 
stability properties. In this subsection, we generate a 
reference motion in the joint space for biped by using 
optimization and enforcing stability conditions.  
It is assumed that the joint angles during the single 
support phase are known at the intermediate and at 
the end of the phase. Also, here only symmetric gaits 
are of interest and the identical model is used for the 
first and second half of a gait cycle with the 
coordinates relabeled. For symmetric gait, initial joint 
angles are determined by swapping legs at the end of 
the single support phase as dEqq  )1()0( . Also, the 

initial and final joint angle rates are related together 
by impact equations (5).  
The goal of the optimization will be to minimize an 
appropriate cost function while simultaneously 
satisfying a number of constraints. In order to 
generate an efficient gait, we use mechanical work 
applied during one half of gait cycle as a cost 
function to be minimized using the following index  

dsdtJ TT T   

1

00
BτqBτq                                    (32) 

Here, T is the period of a half gait cycle. The joint 
torques are given by substituting desired trajectories, 
defined in terms of time-scale parameter, into the 
second equation of (2) as 

)(')',(])()()[( 2 qgqqqCqqqMτ  ssssssd
       (33) 

where 2s and s  have been already defined in (26) 
and (27). 
In order to design a stable gait, we use the stability 
conditions described in previous subsection for 
desired trajectories. 
By considering above descriptions, the optimization 
problem for generation of the stable motion is 
summarized as follows   
(i) In order to satisfy the constraints, we select the 
following fifth-order polynomial functions for each 
joint trajectory in term of time-scale parameter s   

51)( 01

2

2

3

3

4

4

5

5  iasasasasasasq
iiiiiiid

    (34) 

Here, diq is the desired trajectory of ith joint. 

Coefficients of these polynomials ija  and the initial 

slope of time-scale parameter ( 0s ) are unknown and 

determined during optimization. 
(ii)  By choosing the position of the hip point and the 
heel of the swing leg at 1s and 2/1s , we solve 
the inverse kinematic equations for lower body and 
determine the joint positions of each leg at initial and 
intermediate of step. In order to save space, the 
inverse kinematics equations have been eliminated. 
Also, the desired posture of torso is chosen upright at 

1s  and 2/1s . 
(iii) The cost function J is minimized under 
constraints divided into three classes a) Boundary 
equality constraints;  Constraints on the joint angles 
at the intermediate and end of single support phase, 
i.e., q(s=1/2) and q(s=1). The impact equations for 

angular position and velocities, i.e., dEqq  )1()0(  
and 10 )1())1(()0( sssss 

  qqEΔq q where 1s  
can be obtained using (26) at s=1.  
  b) Nonlinear inequality constraints; The forward 
motion constraint (14).No slipping and no bouncing 
conditions (30). 
The boundary of motion of the knees flexion (stance 
and swing legs), i.e.,  20 q and 04  q . 

 No contact between the swing leg and ground during 
single support phase.   
  c) Stability constraints;  
Stability conditions and existence cyclic motion 
described in subsection 3.1, i.e., (22) and considering 
domain of Poincaré map(31).   
Remark 3. As the optimization constraints are 
satisfied for motion planning, we ensure that this 
reference motion is stable during different phases 
since the stability of the unactuated dynamics has 
been satisfied for this stable gait generation.  

4. Control Design   
In previous Section, the periodic desired trajectories 
(34) were expressed in terms of the time-scale 
parameter s. In order to have a stable motion, 
controller should track the time-scale trajectories 
during the single support phase before the impact 
happens. Now, we propose a time-invariant feedback 
to track time scaled trajectories during motion. 
Controller has to bring the swing leg at the desired 
position to hit on the ground in a finite time. 
Suppose that a desired trajectory  )(tsdq  has been 

designed for the stable motion, according to the 
discussion in Section 3. To ensure trajectory tracking 
by the joint variable, the angular position error e of 
the joints from desired paths are defined as

  )()( ttsd qqe  . To demonstrate the influence of 

the input τ on the tracking error, the second 
derivative of e is calculated as 

  )()( ttsd qqe                                                    (35) 

Solving q  from the equations of motion (1) and 

substituting into above equation yields  
eሷ ൌ qሷ ୢ൫sሺtሻ൯ ൅ MିଵሺqሻሾCሺq, qሶ ሻqሶ ൅ gሺqሻ െ Bτሿ  (36) 
Now, a PD controller is considered for the closed 
loop system such that the error dynamics is given as  

eKeKe pv                                                            (37) 

Where pK and vK  are positive diagonal matrices. 

Therefore, the following equation can be obtained 
from (36) 
Bτ ൌ Mሺqሻൣqሷ ୢ ൅ K୴eሶ ൅ K୮e൧ ൅ Cሺq, qሶ ሻqሶ ൅ gሺqሻ (38) 
On the other hand, using chain rule formula, ))(( tsdq  

are given as  
s(s)s(s) 2 

ddd qqq                                              (39) 

By substituting (39) into (38) and using the matrixes 
Bୄ and B+, the control law τ and the second 

derivative of the time-scale parameter s  are obtained 
from (38)  
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ቂ
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Iସൈସ െMന qୢ
′

0ଵൈସ Mഥ qୢ
′ ቉

ିଵ

൥ቈ
Mന ሺqሻ
Mഥ ሺqሻ

቉ ൫qୢ
′′ sሶ ଶ ൅ K୴eሶ ൅

K୮e൯ ൅ ቈ
Cധሺq, qሶ ሻ
Cതሺq, qሶ ሻ

቉ qሶ ൅ ൤
gധሺqሻ
gതሺqሻ

൨൩                                (40) 

The second time derivative of )(ts determined from 

(40) is used as a supplementary input. Hence, the 
number of inputs are equal the number of outputs. 
Thereby we solve the underactuation problem. The 
values of matrices Kp and Kv are chosen to 
asymptotically track the desired trajectories at finite-
time. Note that the control law (40) is a time-
invariant controller and thus the closed-loop system 
is an autonomous system.  
As obvious from (40), there is a singularity in the 
control law when Mഥ qୢ

′ ൌ 0. In the neighborhood of 
desired motion this singularity is avoided since the 
condition (14) as forward motion constraint is 
satisfied during the desired trajectories. Therefore, 
the control law (40) is useful for one degree of 
underactuation in system. 

5.   Simulations          
The geometric and inertia parameters of each link of 
biped are given in Table 1. Desired trajectories in 
joints space are determined by optimization of the 
mechanical work subjected to physical constraints 
and stability conditions described in Section 3. Here, 
we design an optimized trajectory for the biped robot 
walking with step length 0.35(m) and use the values 
described in Table 2 for the stable gait planning. 
Also, the desired posture of the torso is chosen 
upright. 

 

Table 1- Geometric and inertia parameters of biped robot 

Link Torso Thigh Shank 

Length (m) 0.75 0.40 0.50 
Mass (kg) 9 2 1 

Moment of 

Inertia (
2kgm ) 

0.422 0.027 0.02 

 
Table 2- Utilized parameters to solve inverse kinematic 
equations 

s ۽ܠ૝ሺܕሻ ሻܕ૝ሺ۽ܡ ሻܕ۶ሺܠ ሻܕ۶ሺܡ
0. 0 0.05 0 0.87 
1 0.35 0 0.17 0.86 

After we obtain the stable reference motion from 
optimization process described in Section 3, we 
implement the control law (40) in order to track this 
stable motion during the single support phase. The 
gain matrices of the control law have been tuned such 
that the controller can follow trajectories before the 
heel of the swing leg hits on the ground at the first 
gait. Here, the diagonal values of vK  and pK  are 

chosen 37.5 and 350, respectively. The robot motion 
starts from the beginning of the single support phase 
by initial states restricted to the domain of Poincaré 
map (31).  
The simulation data presented in figures 2–7 show 

efficiency of the method proposed in this paper. Here, 
the angle of the right and left legs shown in Fig. 1 are 

depicted as 11 Rq , 
22 Rq ,  



4

1
1

i
iLq ,

42 2  Lq , respectively, and deviation of the torso 

from upright position is given as 
 2521  , where 

i , 51  i are as 

defined in Fig. 1. 

 
Fig.2: Tracking of the joint trajectories during three cycles, 

desired: dashed line and actual: solid line 
 
Figure 2 shows efficiency of the proposed controller 
during three cycles to follow time-scale trajectories 
obtained from optimization process. In order to study 
asymptotically stable motion, the values of 0  in gait 
K+1versus gait k is presented in Fig. 3. It is clear that 

0  converges to a unique value at cyclic value(
01.8c0  ) after four gaits approximately as 

opposed to previous works that take at least 10-20 
gaits[17].Figure 4 shows the evaluation of phase 
portrait of the torso, in where the convergence to the 
periodic orbit is clear. The joint torques of the right 
knee, left knee, hip and torso are provided in Fig. 5. It 
shows that the actuators create the feasible torques 
during motion. The ground reaction forces are shown 
in Fig. 6. The robot will not slip for a coefficient of 
friction greater than 0.5. The vertical force during the 
single support phase is close to the weight of the 
robot (from Table 1, its mass is 15kg). Snapshots of 
animation of the biped during one cycle are also 
displayed in Fig.7. 
 
6. Demonstration of Robust Walking 

In order to show robustness of the procedure 
described in this paper, we simulate the biped motion 
when it walks on the uneven surface. To this end, we 
assume the robot is walking on the level ground and 
suddenly the height of surface changes to an 
unexpected stair.  
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Fig.  3: The value of 0 at step k+1 versus its value at step k 

which intersects with identity map in c0 . 

 
Fig. 4: Phase portrait of torso during motion 

 

 
Fig.  5: Joint torques at hip and knee joints 

 

 
Fig.  6: Reaction forces during three cycles 

 

Consider the biped robot has a stable walk during the 
first gait. In the second gait, the heel of the swing leg 
hits on the unexpected stair with height 20 mm.  Note 
that this value is comparable with the nearly 50 mm 
of maximum height of the end of swing leg during 
motion. Figure 8 shows the phase portrait of the 
torso. Figure 9 displays the Poincaré map 0  for 

third gait and after it.  

 
Fig. 7: Snapshots of animation of the biped taking one step 

from left to right. 

It is obvious that 0  converges to cyclic value 
after five gaits. These results show that the biped 
follows the prescribed cyclic motion after 
encountered with unexpected stair. 

 
Fig.  8: Phase portrait of torso during motion in walking on 

the uneven surface. 

 
Fig. 9: Value of 

0 at step k+1 versus its value at step k which 

intersects with identity map in
0c in walking on the uneven 

surface. 
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7. Elastic Contact Model  
In previous simulations, it is assumed that the contact 
between the leg and the ground is rigid. While in the 
actual applications, this contact may not be rigid. 
This section presents the case where the biped robot 
has a elastic contact model and thus the dynamics 
model of the system at hand also incorporates the 
normal force on the stance leg due to a compliant 
contact with ground and the tangential force due to 
dynamic friction [22]. 
In this case, the biped robot has 7-DOF and the 
generalized coordinates are defined as

T
543211O1Of ],θ,θ,θ,θθyx[ ,,q . Based on these 

coordinates, the dynamic model is given as follows 
with a computation of the reaction forces acting on 
the end of the stance leg  

FqJτBqgqqqCqqM )()(),()( f

T

ffffffffff       (41) 

Here, 77
ff R)( qM , 77),( Rfff qqC  , 7

ff R)( qg , 

and 47RfB . Also, )( f

T qJ  is the Jacobian matrix 

of the end of stance leg and F is the reaction forces 
acting on the end of stance leg given by 
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      (42)  

The model of the normal force can be viewed as a 
nonlinear vertical spring-damper in terms of 
penetration of heel into ground

1O
y . The stiffness of 

the spring and the damping coefficient are denoted as

vk and v , respectively. Also, n is a coefficient 

characterizing the form of the surfaces in contact. For 
this biped with point feet, it is assumed that a sphere 
at heel is in contact with a planar surface. Hence, the 
value of n is 3/2 for this contact [23].   
The tangential force is obtained by using LuGre 
friction model [22]. In this model, it is assumed the 
interface of contacting surfaces is a contact between 
bristles. The bristle dynamics is modeled by 
horizontal spring and damper. Here, the average 
deflection of elastic bristles is denoted as ߩ and its 
derivative is used as the internal state of the friction 
model. ߙଵ , ߙଶ,  are constants for this ߚ  ଷ andߙ
friction model. 
Now, we implement the control law (40), which is 
derived by assumption of rigid contact model, into 
the biped model presented in (41) with the forces 
computed in (42). 
The numerical values used in the simulation, given in 
Table 3, were adjusted for a nominal penetration of 
approximately 3 (mm) and to avoid rebound of the 
leg during the stance phase.  
The simulation results are shown in figures 10-12. 
Figure 10 is depicted the joint trajectories and the 
amount of penetration. The phase portrait of torso is 
showed in Fig. 11 in which the convergence to limit 
cycle is clear even with elastic contact model. Also, 

the evolution of the angles is quite close to what was 
predicted with the rigid contact model (see figure 2). 
The reaction forces for two cases, i.e., rigid and 
elastic contact models are compared in Fig. 12. In 
order to compare these forces, we consider the same 
initial conditions and zero initial state errors at start 
of single support phase for both cases and then the 
control law (40) is used for them. Since a portion of 
energy is lost during penetration, the velocity of 
motion with elastic contact is less than rigid contact, 
as shown in Fig. 12. These results show the biped 
robot can follow a cyclic motion even with an elastic 
contact model.  
   

Table 3. Elastic contact model parameters    

Parameter 
k୴ሺN
/mଷ/ଶሻ

δ୴ሺN. s
/mହ/ଶሻ

αଵሺmିଵሻ 
αଶሺs
/mሻ 

αଷሺs
/mሻ 

β 

Value 
8.9
ൈ 10ହ

4.6
ൈ 10ଷ 

260 0.6 0.018 0.5 

 

 
Fig.  10: Evaluation of the joint trajectories and penetration 

with flexible contact model 
 

 
Fig.  11: Phase portrait of torso in walking with flexible 

contact model 
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Fig.  12: Comparison of reaction forces for two case with 

rigid contact model (dashed line) and flexible 
contact model (solid line) 

8. Conclusions 

An optimization process and a time-invariant 
feedback control strategy have been developed in 
order to obtain a stable motion for a five-link biped 
walker. Using the Poincaré map associated with the 
unactuated dynamics, an explicit criterion for the 
existence of periodic orbits and characterization of 
their stability properties were derived. The simulation 
results show that the biped follows the prescribed 
cyclic motion after a few gaits even since 
encountered with unexpected stair. Also, the results 
showed the biped can follow a cyclic motion when 
the biped is walking on the compliant surface.  
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