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 The main purpose of this paper is to design a novel boundary control 

method grounded in the Hamilton principle in order to control a gantry 

robot manipulator with one axis of rotation while the link’s transverse 

vibrations were examined and the system is affected by rigid body 

nonlinear large rotation and translation. At the beginning, partial 

differential equations (PDE) and ordinary differential equations (ODE) 

will be derived as a governing equation predicated on Hamilton's 

principle. In this paper, the control rules were: first, the system changes 

its position to the desired position. Second, overcoming the flexible link 

transverse vibrations, and finally, controlling angular position. Based on 

Lyapunov functions and considering external boundary disturbance, 

suitable control feedback signals and boundary disturbance observer are 

proposed to achieve control rules that were mentioned above and reduce 

external boundary disturbance impacts at the same time. Eventually, it 

was proved that by choosing appropriate design parameters, system 

states and position error converge exponentially to a small neighborhood 

of zero.  To show the performance of our control method, numerical 

simulation outcomes are dispensed. 
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1. Introduction 

Controlling flexible manipulator’s motion 

has perpetual demand for researchers [1]. The 

critical concerns that these systems will face 

are dynamic accuracy, higher operating speed, 

and ensuring operating safety. For overhauling 

the efficiency, it is best to use lightweight links, 

however, for high-speed precision 
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transportation systems, unwanted vibration 

because of the manipulator link’s flexibility 

and external disturbances  lead to inaccurate 

positioning that is time-consuming and risky as 

well so this was the reason that controlling 

methods for reducing vibration and precise 

positioning are demandable and lots of 

publications were published about techniques 

for regulating  Infinite-Dimensional structures 

[6], [17], [21]. 

The complexity of control design surges as 

a result of the representation of the flexible 

body as a distributed parameter system with 

infinite degrees of freedom. 

Control techniques such as assumed-mode, 

lumped-parameter, and finite element method 

are used to regulate the end effector and 

suppress vibration at the same time and all of 

them depend on discretizing the PDE model 

into a set of ODEs. 

The methods mentioned above don’t 

consider infinite number of vibration modes, so 

to avoid higher-order controlling problems and 

spillover observation and control occurrence, a 

new control PDE-based method that doesn’t 

need discretization for flexible links has been 

established. 

The boundary control method’s advantage 

is its implementation which makes this method 

widely functional in any control strategies for 

systems governed by PDEs so this method 

appears to be the most practical method among 

infinite-dimensional control methods [3].  

In [22], [26], [31] researchers invented 

boundary controllers to make certain that 

closed-loop stability for an unlimited number 

of modes which neglect the spillover 

occurrence, occur for non-discretized PDE 

models.  

 The boundary control method removes the 

in-domain sensing/actuating issue. This means 

that the controllers basically acknowledge 

apparent physical features.  

Moreover, for different kinds of flexible 

systems including strings [5], [12], [17] 

container cranes [16], [8], composite plates 

[25], [29] and composite shells containing fluid 

[24] mentioned researchers have presented 

some boundary controllers for each one. 

Originally, the boundary control method 

was conducted by researchers to deal with 

challenges that they were facing in controlling 

flexible manipulators. 

One of the basic flexible manipulators is 

beams, [23] used control torque and force to 

provide a new vibration reduction technique. 

The author of [20] examined one of the beams 

issues and used (TTS) two-time scale control 

theory and the boundary control technique to 

deal with that. Vibration stabilization 

depending on the Lyapunov function to 

consider boundary output restrictions was 

managed in [15]. In [9] controlling vibration 

with input saturation was studied. 

The writers of [31] asymptotically 

controlled a flexible arm with two-dimensional 

rigid body rotation. Furthermore, in [19] a 

controller was devised for a nonlinear 3-

dimensional flexible arm while gravitational 

energy was neglected. For neutralizing 

unknown boundary disturbances, disturbance 

observers were used. Disturbance observer of 

translating beam was used in [18] and as a 

result, the disturbance’s value of the bonds was 

assessed.  

     Designing boundary disturbances in order 

to estimate the time-varying boundary 

disturbances, was inspected in [14] and [15]. 

In this article, for proposed gantry flexible 

manipulator systems that can be seen in Figure 

1, a novel boundary control method has been 

innovated.  

In this work, the transverse vibration and 

rotation angle have been controlled while the 

suggested manipulator has moved to its 

demanded position. Furthermore, for this 

system, a novel disturbance observer has been 

presented.
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Figure 1. Proposed gantry manipulator systems 

 

In previous published papers, they have 

implemented boundary control methods 

grounded in linear flexible arms in the vertical 

plane. Moreover, designing control strategy 

was barely grounded in the original hybrid 

PDE-ODE dynamic modeling and also they 

didn’t consider the effect of gravitational force 

and base position tracking to the desired 

position that neglecting them could affect 

controller performances. These guesses might 

be suitable for small-angle regulation and 

slow-motion of the manipulator’s base 

specifically near the set point. In many 

applications like in the vertical plane and in the 

presence of time-varying boundary 

disturbances, gaining the exact end-effector 

location by considering all issues is inevitable. 

     It is worth saying that, the control designing 

and stability procedures are based on original 

hybrid PDE-ODE proposed governing 

equations without any simplifications in order 

to overcome accurate positioning. The main 

contributions of this research are summarized 

as follows: 

i. The original PDE-ODE equations of motion 

have been derived from Hamiltonian 

method and in the dynamical model 

everything that has a huge impact on the 

control design strategy like nonlinearities, 

gravitational force, flexibility, the payload, 

base mass dynamics, coupling effects 

between the large rotational angle dynamics 

and changeable boundary disturbances was 

concerned. 

ii. For the proposed system which at the same 

time, base accurate positioning, vibrations 

restraint, and huge nonlinear angular 

rotation were examined while any 

simplifications and spillover were barely 

neglected, a unique boundary control 

technique has been presented. 

iii. Based on controlling purposes and rules, to 

provide the exponential stability of the 

closed-loop system while there are no 

boundary disturbances, a nonlinear 

Lyapunov design has been effectively used. 

Moreover, by utilizing boundary observer, 

uniform boundedness of the closed-loop 

system, which is affected by the unknown 

time-varying boundary disturbance, is 

gained. Furthermore, the boundedness of all 

closed-loop signals is also expressed. These 

signals include the base’s horizontal 

displacement, boundary deflection, 

rotational angle, and shear measurement 

with their derivatives which make them 

feasible. 

This paper is organized as follows. In section 2 

the system kinematics and dynamics are 

proposed. In section 3 some preliminaries are 

examined. Section 4 includes designing 



International Journal of Robotics, Vol. 5, No. 1, (2019), F. Entessari, A. Najafi Ardekany, 63-82 

 

36 

 

boundary control rules by using the Lyapunov 

method and as a result, a complex and proper 

Lyapunov functional will be adopted. 

Furthermore, grounded in over mentioned 

control inputs, the exponential stability and 

uniform boundedness of the closed-loop 

system in the absence and existence of 

boundary disturbance have been examined, 

respectively. Section 5 consists of simulation 

results and is arranged to show the 

effectiveness of the boundary control 

approach. Finally, in section 6 the summarized 

conclusion can be seen. 

2. Mathematical Modeling 

The simplified diagram of the proposed system 

including a portable base, flexible arm, and 

payload at the bottom, can be seen in figure 2. 

Frame XOY is the fixed inertial frame, and the 

motion of the system takes place in a vertical 

plane. Consider the spatial coordinate along the 

longitude of the flexible link is x, t denotes 

time, w(x, t) represents the transverse 

displacement because of lateral vibrations of 

the flexible link at the spatial coordinate and 

time, θ(t) represents the angle of rotation and 

�̇�(t), �̈�(t) are first-order derivatives and second-

order derivatives respect to time. Consider η (t) 

and �̇�(t), trolley position and velocity 

respectively. Furthermore, let m1 and m2 be 

the equivalent mass of base and payload 

respectively, l denotes the length of the link, ρ 

the mass per unit of length and the subscripts 

x; t denotes the partial derivatives with respect 

to x; t, respectively. 

 
Fig 2. Schematic of flexible gantry manipulator with input 

forces and boundary disturbance 

 

The kinetic energy of the Gantry flexible 

manipulator system can be represented as: 

( )

( ) ( )

2

1

2 2 2 2

2

0

1/ 2

1/ 2 1/ 2

T

l t

x y xl yl

K m

v v dx m v v

= +

+ + +
             (1) 

𝑣𝑥 and 𝑣𝑦 denote the velocity vectors of 

flexible system in x and y directions and can be 

defined as: 

( )

( ) ( ) ( )( ) ( , ),t

xv

t

x cos

cos w x t sinw x

  

  

= +

+ −
        (2) 

( )

( ) ( ) ( )

( ) ( )

( ) ( , ) ( ) ( )( , )t

yv x t sin t

sin t w x cw tt t sx t o

 

  

=

+ −
        (3) 

Using equations (1) ,(2) and (3) the kinetic 

energy can be rewritten as: 
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The potential energy ( )pE t  due to the strain 

and gravity potential energy can be shown by: 

1 2p p pE E E= +            (5) 

In which 

( )
2

1

0

)1/ 2 ( ,

l

p xxE EI xw t dx=           (6) 

1
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2
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( , )sin( ( ))

cos( ( ))

( , )sin( ( ))

l

p

l x t
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w x t t
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m g
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− + 
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+  
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In order to obtain the equations of motion, the 

extended Hamiltonian principle is applied. 

( )
2

1

0

t

e

t

T V W dt  − + =          (8) 

eW , , w and      represent the virtual  

work, the virtual base displacement,  virtual 

elastic transverse displacement and virtual 

rigid body angular rotation respectively. 

The total virtual work done on the system due 

to extrinsic disturbance and control forces on 

trolley and payload is given by: 

1 3

3

( ( )) ( ( ) ( )) ( , )

( ( ) ( ) ( ))

ew F t F t d t w l t

F t l d t l t

  

 

= + +

+ + +                
(9) 

Assumption 1.  For unknown boundary 

disturbance ( )d t , its derivative ( )d t is bounded 

by positive constant D + , such that

( ) Dd t  , ( ) [0, )t   . 

1( )F t  and 3( )F t are respectively the control 

forces on the trolley and the payload, and the 

control torque applied on the hub denoted as

( )t , ( )d t  represents the extrinsic disturbance 

on the payload and by combining above 

equations and considering some simplification, 

equation (8) can be written as: 
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      (10) 

Letting 1( , ) 0x t = , 2 ( , ) 0x t = , 3( , ) 0x t =  

and 5 ( , ) 0x t = , the equations of motion and 

the boundary conditions can be obtained as 

follows: 
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3. Mathematical Preliminaries 

For a better understanding of subsequent 

analysis, some lemmas are mentioned as 

following: 

Lemma 1 [29]. Let 1 2( , ), ( , )u x t u x t      R   

with x  [0, ]L   and [0, ]t   the following 

inequalities hold:    

2 2

1 2 1 21 2
2 2u u u uu u  + 1 2,u u R   (15) 

Similarly, from (1) we can show that: 

( ) 2 2

1 1 21 2 2

1 1
u u uu u u 
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 
=  + 
 

 (16) 

Lemma 2 [29], [4] and [7]. Let ( , )u x t    R  

with x  [0, ]L   and [0, ]t   which satisfies 

the boundary condition (0, ) 0u t = ,    

the following inequalities hold: [0, ]t   

2 2

2

0 0
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0
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( , ) ( , )
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l l
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l
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u x t dx u x t dx
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

             (17) 
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3 2
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( , ) ( , )
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l

x

l
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u x t l u x t dx

l u x t dx

 



         (18) 

In addition, if ( , )u x t  satisfies the boundary 

condition (0, ) 0xu t = , the following inequality 

holds: 

2 2

0

( , ) ( , )

l

x xxu x t l u x t dx          (19) 
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Equalities (15) , (16), (18) and (19) are used to 

express boundness of the Lyapunov function 

and its time derivative.  

For expressing that along closed-loop process, 

all system signals remain bounded, equality 

(17) grounded in clamped boundary condition 

( (0, ) 0w t = ), is utilized. 

Assumption 2. Based on kinetic and potential 

energy in equations (4) and (6) for proposed 

crane system the following properties hold: 

Property 1 [27], [28]. If the kinetic energy of 

system is bounded [0, )t    then 

( ) ( , )
n

n tw x t
x




 is bounded for 0,1,2n =  , 

[0, )t   and [0, ]x l   . 

Property 2 [27], [28]. If the potential energy 

of system is bounded [0, )t    then 

( ) ( , )
n

n xw x t
x




 is bounded for 1, 2n =  , 

[0, )t   and [0, ]x l  . 

Remark 3. From a strictly mathematical point 

of view, one might question the above 

boundedness properties. However, from an 

engineering point of view, it appears rational to 

presume for a real physical system that if the 

energy of the system is bounded, then all the 

signals which make up the governing dynamic 

equations will also remain bounded [28]. 

 

4. Control design  

Grounded in the control design, as can be seen 

in Figure 2, designing boundary signals 𝐹1 , 𝐹2 

and ( )t , which are cooperatively applied on 

boundaries and hub, is the major 

accomplishment. To inspect the stability of the 

closed-loop system, signals that were 

mentioned above are utilized which help to 

reach the control laws: :(i) drive manipulator’s 

base to the expected position  𝜂𝑑 (ii) terminate 

the transverse vibration of the arm and control 

the rotational angle i.e., to guarantee 

( , ) 0w x t →  and ( ) 0t →   in the presence of 

the unknown varying disturbances. The 

following control laws are introduced: 

 

Figure 3 Block diagram of feedback control of flexible gantry manipulator system based on boundary control strategy 
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3 2( ) ( )F t k t= −
                                 (22) 

In which 
1 2 3, ,k k k and 

4k  are positive control 

gains and auxiliary function ( )t defines as: 
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, sin ( ( )

( )

)

t

xxx s

w l t l t
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Remark 4. In implementing the control laws, 

some of the proposed feed backed signals can 

be measured by existing sensors and the rest 

can be obtained by calculations[13].  

( ),xxxw l t can be measured by shear force 

sensor at boundary ( ),tw l t  and ( , )xxxtw l t  

can be calculated by backward differencing.

( )t  and ( )t can be obtained by position and 

velocity sensors respectively. At last, ( )t  and 

its derivatives , ( )t  can be calculated by rotary 

encoder and tachometer respectively. In this 

work, the Lyapunov candidate can be settled 

as: 

( )

2 3

2

1

2

( ) ( ) ( ) ( )

)( ) (
2 2

pk k
e t

V t V t V t

s t

V t

in 

= + +

++
        (24) 

Where  , , pk , k   are positive terms. The 

base position set point error ( )e t  is definded in 

order to gain control objectives. 1V and 2V  are 

explained grounded in the total mechanical 

energy of the string and the kinetic energy of 

the base and payload mass, respectively. in 

order to competence the stability procedure 3V  

is explained. They are defined as: 

( )

( )

2

1

0

2

2

0

( )

( ) ( )
1 2

( )

1

( , )

)

( ) ( )

2

( , )

( ,

t

l

l

xx

w x t

t cos t
V dx

t

t sin t

EIw dx

x t

w x t

x t














  +
  
  +  

= + 
  
+   −   





        (25) 

( )( )

( )

2

2
2 2

2

1

( , )

( ) ( )

(

(

)

( ) ) ( )

1 2 ( )

1 2

w l t

t t

t t cos t

V m t

si

t

n

m

 

 












 +
 
 

=   
+   −   

+

       (26) 

( )

0

3

0

( , )sin( ( ))

sin( ( )) ( )

( )

(

sin( ( )) ( , )

, )

( )

l

t
l

s

s

V

x

x

k

g w x t t dx

w

t t dx

cos t

t

E I t w l

k

t

t

  

  







=

 
 

+ + 
 + 

+




               (27) 

( )0

4

(

(

, )

( , )

( )

)

( )

t
l

x

w

V xw x t dx

co

x

s t

t

x t

t

 



 
 

= + 
 + 


 (28) 

Lemma3. The Lyapunov function candidate 

(24) is bounded by positive variables as 

following: 

( )

( )

22

0

2

1

2

1

2

2 2 2

0

2 2

12

( )
0

(

(

) ( )

( )

( ) )

)

( )

( )

( ) (

l

xx

l

xx

t w dx

e sin t

t w dx

e t

t
V

t t

tsin

t

t

















 
 

 
+ +

+ + +

+ +

+


 
 
 

 
 


+ +










         (29) 

The auxiliary variable ( )t  is defined as: 

2

0

2 2 2 2

0

( , )

( ) ( )

( )

( , )

l

t

l

t

x x

w x t dx

w t t d l t



 + +

= 



        (30) 

Proof. Based on equations (16), (25) and 

adding two positive terms ( )2 2,
2 2

pk k
e sin   it 

is concluded that ( )2 2

1
2 2

pk k
V e sin + +  is 

upper bounded as: 
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( )

( )

( )

( )

2

2

2 2

1

2

0

2 2

0

2 2 2

0

3 2 2 2

2

(

0

, ) 2

(

2 2

( , )

1

2

)

2

,

2

( )

2

p

l

t

l

xx

l

p

k k
V e sin

w x t dx

EIw dx l cos

w t dx l sin

k k
l e sin

x t

x t









   

    

  

 +

+ +

+

+ + +

+ 







   
(31)

 

By having 
( )

( )

2 2 2

2 2 2

2

2

l l cos

l sin l

    

   



+ 
 and 

based on definition of ( )t   in equation (30) we 

can rewrite equality (31) as:    

( )

( )

( )

( )

2

0

2 2 2

1

2

0

2

2 2

m

2

( )in 2,

2 2

2 ,2

2 2

2

( , )

max ( )

( , )

l

xx

p

l

xx

p

EIw dxl

k k
l e s

t x t

in V

l

EIw dx l

k k

t

x t

e sin





 

  

 

  







+ + + 

+

+

+

+ +





           (32) 

From definition of 2V  in equation (10) and 

inequality (1) and by having 

1,
1 2

2 max
2

m
b m

 
=  

 
and 1,

2 2
2 min

2

m
b m

 
=  

 

which is positive weighting constant, we can 

show that is bounded as following:   

 

2

2 2

2

2 2
1 2

2 22

( )

( )

( ) ( ) ( , )

( ) ( ) ( , )

b Vt t l t

b t l

w

t

t

tt w

 

 





 + + 

  + + 

     (33)

  

Also in similar manner based on equations (15)

, (16) and (27) it is shown that: 

( )

( )

2

0

2 2

2

2

0

3 4 ( )

( , )

2

sin ( )

(

2

, )

l

xx

l

V V l t

l w x t dx

l cos

g t

g w x t dx

 



  

 



+

+

+

+

+ 





   (34) 

Based on relations (17) and (18) it can be 

shown 2 4 2

0 0

( , ) ( , )

l l

xxw x t dx l w x t dx   and 

2 3 2

0

( , ) ( , )

l

xxw l t l w x t dx   respectively. So 

relation (34) can be rewritten as: 

( )( )

( )

( ) ( )

2

3 4

2

2

2

0

3

( )

4

sin

4

( , )

( )

l

s

s

s

s

xx

V V

k gl lEIl

l k t

lk

k

w x t

t

x

g EI

d

 

  

 

  

+ + ++

+

+ +

+





+

+

          (35) 

By adding equalities (31) ,(33) and (35) based 

on defining positive constants as following: 

( ) ( )

( ) ( )

( )( )

( )( )

1

2

3

4

23

23

min 4,

4,

2

0

2max

0

2

s

s

s

s

l kl

l kl

EI k gl lEIl

EI k gl lEIl









  

  

  

  

= 

=

=

+

=

−

+ +

− + ++

+ +



++

Furthermore 

( )5 1 02 4 sl lb k   += + −  and 

( )6 1 4 skb l   + += + . Considering,

( )7 0
2

s

k
k g EI  += − +   and

( )8
2

s

k
EI k g  = + + + , the Lyapunov 

candidate function relation (29) is proved. 

where 19 3 5 7min , )( , ,   =  and 

210 4 6 8, )max( , ,   = are positive constants. 
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 Theorem 1. For the system dynamics 

described by (11) , (12) and (13) , boundary 

conditions (14), using the proposed boundary 

control laws (20), (21) and (22) , if the initial 

conditions are bounded, then the system is 

regulated asymptotically in the following 

sense: 

lim ( , ) 0
t

w x t
→

=
 , 

lim ( ) 0
t

t
→

=
, 

lim ( ) 0
t

e t
→

=
  

Proof. Differentiating Lyapunov candidate 

equation (24) respect to time leads to: 

( )
1 2 3

4

(

(

( ) ( ) ) ( )

)( ) k

t

t si

V t V t V V

V t n

t

 

+

+

= +

+
          (36) 

The first term of equation (36) can be 

represented as: 

1 1 2( ) ( ) ( )V t E t E t= +
                       (37) 

In which 
1 2( ), ( )E t E t can be shown as: 

 

( )( ) ( )

( ) ( ) ( )
1

0

2

0

x

t tt
l

l

xxt

t

x

t t

E
w w w w

w cos
d

w

w

x

dE

x

wI x



 






+  
=

+

+ +
 
  




         (38) 

( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

2

2

0 2

}

{

tt

tt

l

t

t

x w

xcos xcos

xsin

w cos w sin

wsin wsin

w sin

wcos w x dx

E



 



 

 

 

   

 

  

   

 

  

+ +

+ +

− +

−

− −

−

− +

= 

      
(39)

 

By substituting equation of motion (13) into 

equation (38) we obtain:  

( ) ( )

1

0

0

0

0

2

( ) ( , ) ( , )

2

( )

l

t xxxx

l

xxt xx

l

t

l

t

E t EIw x t w x t dx

w w

g

EI dx

dx

dx

w w

w sin t









 

 

= −

+

+

−









       (40) 

By integration by part and from the definition 

of auxiliary function ( )t , equation (40) yields 

to: 

( ) ( )

2

2 2

2

1

2

2 2

0

,

sin ( ( ))

sin( ( ))
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(

2 ( )
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w

t
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l
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 



















 +
−   + + 

 
−  

+ 

− 
−  

+

−

 

+



       

(41)

 

Based on (16), differentiating 
2 ( )V t  yields to: 
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( )
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(42)

 

Differentiating 
3( )V t  yields to: 

( )( )
( )

( ) ( )

( )

( )

3

0

0

0

0

( )
( )

( )

( )

sin( ) ( ) ( )

( ) ( ) ( )

( , )sin( ( ))

( , ) ( ) cos ( ( ))

( , )

( , )

( )

( , )

l
t

ttl

l

t

l

s

s

s

w x t
V t dk xcos

cos t

w x t

t cos t dx

t t sin t

g w x t t dx

g w x t t t dx

E I k cos t

x

w

t

t

t

l

x

k


 







  

  

  

   

 

 +
=  

 + 

 +
 

+ + 
  − 

+

+

−









sin( ( )) ( , )s tE I k t w l t+

     
(43)

 

By substituting equation of motion (13) into 

equation (43) we obtain:  
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Furthermore based on ( )0 1cos     we have: 
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
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         (47) 
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In similar way by differentiating 
4 ( )V t  one can 

attain: 
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  

+ 
 

=  
 + 

 
 
+ 

+  +
 
 − 





    

(48)

 

By substituting equation of motion (13) into 

(48) and some simplification yields to: 

( )

( )

( )

˙

0

0

2

0

4 ( )

( )

( , )

( , )

( , ) ( ,

(

)

)

t
l

xt

l

x xxxx

l

x

w

V

x t

x t

x t x t

xw
g

x w x t dx

t cos t

EI xw w dx

w sin
x d

sin

  

 



 
 

 

 
 

= + 
 + 

−

 
+  



+

 −







       (49) 

Equation (49) can represented as:  

4 1

˙

2 3( ) ( ) ( ) ( )t A t A t A tV = + +
          (50) 

which: 

( )

1

0

( )

( )

( )

( , )

( , )

( )

l

xt

t

A t xw

w

x t dx

t cos

t

x

t

x

t

 



 

=

 
 
+ 
 + 


                     (51) 

( )

( )

2

2

0

( )

l

xA x

w

xw sin d

sin

t g



  

 

 
 
 
 

= +

 − 

         (52) 

3

0

( ,{ )

( , )}

( )

l

x

xxxx

A

x

x

x

t EI x w t

w dt

= − 
           (53) 

Integrating equation (51) leads to: 

( )

( )( )

2 2

1

0

2

0

0

,
( )  

2 2

2

l

t t

l

t t

l

xt

w l t w
A t l l dx

l w l x w dx

xw rcos dx

 

   

  

= −

+ −

+







  (54) 

Based on relation (16) it can be shown that: 

( )( )

( )

( )

0

1

3
2

2

0

3
2 2

2

2

1

( , ) ( ) ( )

,

3

( )

( )

(
3

,

)

l

xt

t

l

t

xw x t t cos t dx

l
w l t

l
w dx

l
co

t

tl

x

s t

   








  





+

 
+  

 





         
(55)

 

2

0

2 3
2

4

3

3
2

4
0

2

3

2

( , )

( , )

2

2 ( , )

( )2
3

( , )
3

t

l

t

l

t

t

l

x

tl w

x w x t d

l l
t

l w

l t

x t dx

l w

 

 








 



 
  
 

 
 
 

+

+

+





         (56) 

By substituting relations (55) and (56) into (54) 

it can be obtained: 

( )

( )

3 3

2

4

2

0

2 2
3

1

2 3
2

4

3

3
2 2

1

2

1( )

( , )

2
2 3 3

 
,

2

( )2
3

( ) ( )
3

l

t

t

A

o

t

x t

l l l

w dx

l l
l w l t

l l
t

l
t c s tl

 




 
 









  



 
− − −  
 

 
+ ++ 

 

 
  
 

 
+ +

+

  







         

(57)

 

Integrating equation (52) leads to: 
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( )

( ) ( )( )

2 2

2 2

0

0

2 ( ,
2

)

l

l

x

l
w l t

w dx

x w gsin sin dx

A t






    

−

+ −

=





        
(58)

 

By integrating the third part of equation (58) on 

can obtain: 

( ) ( )( )

( ) ( )

( )

( )

0

0

3
2

5

3

5

0

( ) ( ) , ( )

( ) ( ) ( ) ( , )

3

( , )
3

l

x

l

l

x

xw gsin sin dx

l t t w l t sin t

l t t sin t w x t dx

g l
sin

l
g w x t dx

    

   

   






 

− 

−

+

+







       

(59)

 

Relation (59) also can be rewritten as: 

( ) ( )( )

( )

( ) ( )

0

2 2
6

7

2 2

7

0

3
2 2 2

6 5

3
2

5

0

( ) ( )

( )

( ) ,
3

( ,

( , )
3

)

l

x

l

l

xx

xw gsin sin dx

l
l t sin t

l t w dx

l g l
t w l t sin

l
g l w x t dx

x t

    


   



  

 
 

 

 

− 

 
 
 

+

+

+

+







       
(60)

 

Based on inequality (60), equation (58) yields 

to: 

( )

( )

( )

( )

2 2

7

0

2 2

6

2 2
6

7

3
2

5

2

5

3
2

0

( ) ,
2

( ) ( )

3

( ,

(

3

)

)

l

l

xx

l w dx

l l
t w l t

l
l t sin t

g l
sin

l
g l w x t dx

A t    


 




   








 

− −

 
++ 

 

 
 
 

+

+



+





         (61) 

By integrating by parts, 3( )A t yields to: 

0

3

0

( , ) ( , )

( , ) ( , )

( , ) (

(

, )

) x xxx

L

x xxx

L

xx xxx

A EILw l t w l t

EI w x t w x t dx

EI x w d

t

x t w x t x







+

+

= −





         (62) 

By integrating relation(62), 
2 ( )A t can be 

obtained as follows: 

2

3

0

( , ) ( , )

3 / 2 ( , )

x xxx

L

xx

EILw l t w l t

EI w x t dx

A 

−

 −


         (63) 

Based on (16) and (19) Relation (63) also can 

be rewritten as: 

( )

2

3

8

2

8
0

( , )

3 ( , )
2

xxx

L

xx

EIl
w l t

EI w x t dx

A

l





 − −





         (64) 

By substituting (57), (61) and (64) into (50), 

4V  can be determined as following: 
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( )

( )

( ) ( )
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2 2
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0
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2
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2

0

2

3

1
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8

2 3
2

4

3

4

6

3
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2
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2

, ,

(
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(

)
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2
3

2

l
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l

l

t
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V
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x
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EI g ll

w dx

l w dx

l l l

w dx

l l
l

EIl
w l t w l t

l l

l l

t

t

  

   
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



 
 













 



 
− −− 

 

− −

 
− − −  
 

 
+ ++ 

 

 
+  
 

 
++ 

 



+






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( )
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2 2

3
2 2

1

2

2 2

3
2

5

6

7
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( ) ( )
3
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3

t w l t

l
t cos tl

l
l t sin t

g l
sin


  




  
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






 
+ +  
 

 
+ 

+

+
 

  

(65)

 

By introducing following relations as follows: 

( )

( )

( ) ( )( )

3
2 2

1

2

2

2

6

2

2 2

2 2 2

7

( ) ( )
3

( ) ( )

l
t cos tl

l
l t sin t

sin cos





  




  

   

 
+  



+



 
+ 
 

 +

         (66) 

In which  

3

6

2

1

2 7

max ,
3

l l
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 
    






 
= +  

 
+  

and also: 

By substituting equations (64),  (65) and (66)  

into (36), then we have: 

 

 

 

 

 

 

( )
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w d
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 






 


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
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
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 


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 










 
 
 
 
 
 
 
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− −− 

 

 
−− − 

 

 
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−

 
− + −  
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
 

   

(67)

 

    

The positive parameters  

1 4 1 1 11 1 8, , , , , , , , andp e sk k k k k k    − −−

are determined in order to fulfill following 

relations:  

( )8

3 4

3

1

2

5

3
2

3
0

EI l

l gl
g l

 


 





−

− −

=



          (68) 
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2 7 1 0skl   = − −
         (69) 
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2

3

3

2

2

0

2 3

3

s

l l

kl





 


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

−

−

=
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(70) 
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4

3
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2

4
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2
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
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






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

−

          (71) 

5 1 2 0k EI  = − 
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k
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l
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g


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
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
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
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+

−

−
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−




+



           (73) 

37
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0
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
 


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8
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EE IlI 
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49 0k  = − 
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 
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0
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Also relation (67) implies that 

2 2 2

2

11

0

( )

( ) s

(

)

, )

( i () n

l

xxw x t dx

t

t

t

V







 

 
 
  −
 
 
 +

+

+ +

 , in which 

13 is positive constant by definition

( )13 1 2 3 12min , , ,...,    = . Also there exist 

2 2

0

2 2 2

( )

( ) sin ( )

( , ) ( )

l

xxt

e t

w x t dx t

 

+ +

+ + +


 is bounded. 

  Since all terms are all positive, then 
2 2( , ), ( )( ), xxw x t tt  and 2( )t are all 

bounded, based on boundedness of ( )t ,

( , )tw x t , ( )t are bounded [0, )t   and 

[0, ]x l  . So boundedness of the total 

mechanical energy of the string system is 

gained. From properties 1 and 2, ( , )xxxtw x t  

and ( , )xxxxw x t  are bounded [0, )t   and

[0, ]x l  . From equation of motions (11), 

(12) and (13) it will be concluded that ( , )ttw x t  

, ( )t  and ( )t  are all bounded [0, )t   and

[0, ]x l  . Grounded in all above statements 

it can be concluded that the control signals are 

bounded and all the signals in closed loop 

system remains bounded. 

 

5. Simulation Results 

The solution for the suggested system that has 

been expressed by equations (11), (12) and (13) 

with the boundary conditions (14),  grounded 

in finite difference method is reached and for 

solving the differential equations [11] , the 

above mentioned solution dispenses an exact 

process. Proposed system which is excited by 

boundary disturbance ( ) 0.1sin(0.1 )d t t=  

with initial conditions
0

0 40 = , 0 0 =  ,

( ,0) 0w x =  and ( ,0) 0tw x =  is considered. 

Demonstrating the performance of the control 
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rules (20), (21) , (22) and disturbance observer 

is the main purpose of this section. The other 

specifications are introduced in Table 1.

 

 

Table 1. Gantry manipulator specifications  

Parameter Description Value 

l  Length of manipulator 0.8 m  

1m  Mass of base 5 kg  

2m  Mass of tip payload 4 kg  

  Uniform mass per unit length 0.2 /kg m  

EI  Bending stiffness of manipulator 28 Nm  

I  Inertial of the hub 20.3 /kg m  

d  Desired position 1 m  

 

In order to evaluate the control performance, 

two cases are compared. First, the system 

behavior lacking control inputs is 

demonstrated. Then by exerting control inputs 

on the system, the impacts of the control inputs 

are represented. In Figures 4-7, The 

manipulator position, the three-dimensional 

delineation of the transverse vibration of the 

manipulator, the deflection of the four equi-

distanced points on the link, and the angular 

position of the proposed system which all of 

them are without control, are illustrated, 

respectively. This show that the system is 

thoroughly unstable in the absence of feedback 

control inputs. 

 
Figure 4. Manipulator position without control 

 

 
Figure 5. Transverse displacement   of flexible 

manipulator without control 

 

As can be seen, because of the boundary 

disturbances, the manipulator and the angular 

position are far beyond from the desired 

position and regulation point, respectively. 

Furthermore, the proposed system is affected 

by the large vibrations that depend on the 

manipulator’s length which cannot be 

neglected. 
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Figure 6. The deflection of the four equi-distanced 

points on the link without control 

 

 
Figure 7. The angular position of flexible manipulator 

without control 

 

In the second case, to gain control objectives 

and guarantee the best performance of the 

controller, the simulation performed by 

exerting introduced control rules with 

appropriate parameters. Mentioned control 

gains are taken cautiously by a large number of 

trials. Furthermore, they must satisfy relations 

1 11 1 8, − −  and  (29) which all lead to reaching 

the best performance of the controller. 

Accordingly, the proposed parameters are 

chosen as 3 = , 0.01 = , 1 0.02ek = , 

0.01sk = , 1 2 10 − = , 3 1 = , 4 0.52 = , 

5 98 = , 6 9 1 − = , 10 0.1 = , 11 1 = , 12 26 = ,

13 12.4 = , 14 15 1 − = , 1 1100k = , 2 7k = ,

3 1.5k = , 4 1k = , 70k =  and 260pk = .  

In Figure 8, it can be seen that the system is 

driven to the demanded position within 6 

seconds. It is noteworthy that because of the 

feedback control inputs, the deflections as a 

consequence of vibration are suppressed. In 

Figures 9-10 , the feedback proposed control 

inputs is shown. Furthermore, based on Figure 

11, the angular position is greatly regulated 

within 7 Sec. 

 
Figure 8. Manipulator position with control 

Figure 9. Transverse displacement ( , )w x t  of flexible 

manipulator without control 

 

 
Figure 10. The deflection of the four equi-distanced 

points on the link without control 

 
Figure 11. The angular position of flexible manipulator 

without control 

 

6. Conclusion 

All in all, for the proposed manipulator 

which was affected by time-varying boundary 

disturbance with rigid body nonlinear 



International Journal of Robotics, Vol. 5, No. 1, (2019), F. Entessari, A. Najafi Ardekany, 63-82 

 

50 

 

enormous angular position and translation, 

dynamic PDE-ODE delineation has been 

extracted grounded in Hamiltonian. 

A novel boundary control method has been 

established grounded in the initial hybrid PDE-

ODE dynamic modeling without any 

simplification to reach accurate locating of the 

system while all nonlinearities and 

gravitational force has been examined. 

Grounded in a newly introduced control 

strategy, by designing boundary control rules 

and boundary disturbance observer, transverse 

vibration and nonlinear angular position have 

been controlled with exponential decay rate, 

manipulator drove to the expected position, 

and at the same time the boundary disturbance 

has determined. The ultimate boundedness of 

the closed-loop system has been gained 

grounded in the Lyapunov direct method. 

Numerical simulations show the usefulness of 

the nonlinear proposed controller and observer . 
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