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 This paper aims to develop a boundary control solution for a single-link 

gantry robot manipulator with one axis of rotation. The control 

procedure is considered with link’s transverse vibrations while system 

undergoes rigid body nonlinear large rotation and translation. Initially, 

based on Hamilton principle, governing equations of hybrid motions as 

a set of partial differential equations (PDE) and ordinary differential 

equations (ODE) will be derived. The control objectives which are 

sought for include: moving the system to a desired position, regulating 

large angular position and finally suppressing the flexible link transverse 

vibrations simultaneously. By considering novel Lyapunov functions 

and avoiding any simplifications, In the presence of external boundary 

disturbance, proper control feedback signals and boundary disturbance 

observer are introduced in order to reach mentioned control objectives 

and compensate external boundary disturbance effect simultaneously. At 

last uniform ultimate boundedness of the closed loop system is proven 

in which by choosing proper design parameters, system states and 

position error converge exponentially to a small neighborhood of zero.  

In order to illustrate the performance of the proposed control method, 

numerical simulation results are provided. 
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1. Introduction 

Development and motion control of 

flexible manipulators has received everlasting 

demand for robot fabrications and researchers 

(De Luca and Book, 2008). The most critical 

issues for these systems are dynamic accuracy, 

higher operating speed and ensuring the 

operating safety. Although employing 
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lightweight links can improve the total 

efficiency, for high-speed precision 

transportation systems, the large amplitude 

undesirable vibrations due to the flexible 

properties of the manipulator and the external 

disturbances contribute to imprecise 

positioning which is time-consuming, 

extortionate and perilous as well. Therefore, 

the effective control methods for accurate 

positioning and vibration suppression are 

desirable and has attracted a great deal of 

attention currently and many publications have 

been devoted to Infinite Dimensional Control 

methods that guarantee the stabilization of 

infinite-dimensional Flexible structures (Halim 

and Cazzolato, 2006; Krstic, 2009; Luo et al., 

2014). (Fang et al., 2003; Ismail et al., 2009; 

Vaughan et al., 2010).In which due to the 

representation of the flexible body as a 

distributed parameter system with infinite 

degrees of freedom, the complexity of control 

design rises. 

Since PDE based stabilization producer has 

not been well developed compared to control 

approaches for ODE systems, control 

techniques such as assumed-mode, lumped-

parameter, and finite element methods are used 

to simultaneous end effector regulation and 

vibration suppression, which all relay on 

discretizing the PDE model into a set of ODEs. 

Since control design based on over mention 

methods only consider a finite number of 

vibration modes, in order to avoid high order 

controlling problems and spillover observation 

and control occurrences, many new control 

approaches based on original PDE model 

without discretization for flexible links have 

been presented. Other approaches based on 

infinite-dimensional control procedure include 

distributed control methods, which is based on 

the implementation of a network of sensors and 

actuators distributed at interior points of the 

system. Enhancement of these kinds of devices 

such as piezoelectrics and strain gages leads to 

increase in cost and complexity. 

Among infinite dimensional control 

methods, boundary control as comparison 

seems to be a more practical method. The 

implementations trait of these controllers 

makes them be widely applicable in many 

major control strategies for systems governed 

by PDEs (De Queiroz and Rahn, 2002). The 

BCs designed for the non-discretized PDE 

models ensure closed-loop stability for an 

infinite number of modes which avoid the 

spillover phenomena (Meirovitch and Baruh, 

1983; Najafi et al., 2011; Vatankhah et al., 

2015). Additionally, this method removes the 

in-domain sensing/actuating problem; on the 

other hand, the controllers basically admit 

apparent physical features. Therefore, several 

researchers have proposed applying the 

boundary controllers for a variety of flexible 

systems such as strings(Fung et al., 2002; He et 

al., 2012; Krstic, 2009),  container cranes(He et 

al., 2017; He and Ge, 2016) flexible aircraft 

wings(He et al., 2018), satellites (W. He and 

Ge, 2015), composite plates (Najafi et al., 

2010; Rastgoftar et al., 2010) and composite 

shells containing fluid (Najafi and Eghtesad, 

2013). 

Mainly, based on the benefits of the 

boundary control method, the researchers have 

been established this method to overcome the 

challenges facing the control of flexible 

manipulators. 

For beams as a fundamental element in 

flexible manipulators, (Morgul, 1992) by using 

boundary control torque and force have 

developed a vibration control strategy. 

(Lotfazar et al., 2008) studied general in-plane 

trajectory tracking problem of a flexible beam 

using two-time scale control theory and BC 

method. Also, comprehensively (Ge et al., 

2011) have developed control scheme for 

vibration suppression while dealing with 

compensation of the system parametric 

uncertainties and the disturbances 

uncertainties. Similarly, (Wei He and Ge, 

2015) addressed vibration stabilization based 

on barrier Lyapunov function theory in order to 
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consider boundary output constraint. 

Moreover, vibration regulation with input 

saturation is also considered in (He and Liu, 

2019). 

As mentioned before, based on BC 

technique novelty, this method has been 

extended for the different flexible 

manipulator’s systems.  (Queiroz et al., 1999) 

addressed asymptotic BC strategy for a 

nonlinear vertical flexible link by developing 

control torque on hub and control force on 

endpoint in order to regulate the vibration and 

drive the manipulator to the desired 

point.(Endo et al., 2009) consider two-one link 

flexible arm for grasping task and implement 

BC to achieve both asymptotic and exponential 

stability And expansively (He and Sun, 2016)  

have achieved the uniform boundedness of 

closed-loop system and existence and 

uniqueness of flexible vertical arm with input 

constraint . For nonlinear flexible arm 

(Tavasoli and Mohammadpour, 2018) 

asymptotically regulated a flexible robotic arm 

with 2-dimensional rigid body rotation. 

Moreover, (Liu et al., 2018) designed a 

controller for nonlinear 3-dimensional flexible 

arm ignoring gravitational energy . 

Furthermore, in order to compensate 

unknown boundary disturbances, disturbance 

observers are implemented. (Kyung-Jinn Yang 

et al., 2005) have implemented disturbance 

observer of translating beam in which the value 

of the bonds of the disturbances are estimated. 

To compliment (He et al., 2013b) and (He, Ge, 

et al., 2015) investigated designing boundary 

disturbances in order to estimate the time-

varying boundary disturbances. 

In this paper, a novel BC strategy has 

addressed for gantry flexible manipulator 

systems. Proposed gantry manipulator systems 

are illustrated in figure 1. In this work, the 

transverse vibration and rotation angle have 

been regulated, meanwhile proposed 

manipulator has directed to the desired 

position. Moreover, boundary disturbance 

observer has been designed for the proposed 

system. 

 
Figure 1. Proposed gantry manipulator systems 

 

What has been considered in most of the 

above-aforementioned work; they have 

addressed the BC method based on linear 

flexible arms in the vertical plane. 

Furthermore, the designing control procedures 

were not relatively based on the original hybrid 

PDE-ODE dynamic modelling. To the best of 

our knowledge many nonlinearities, the effect 

of gravitational force and base position 

tracking to the desired position has been 

disregarded, which the ignorance of them 

affected the proposed controller performances. 

These assumptions may be appropriate for 

small angle regulation and slow motion of 
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manipulator’s base specifically near the set 

point. However, in order to achieve precise 

locating of the end effector, considering over 

mentioned issues are inevitable in many 

applications, especially in the vertical plane 

and in the presence of time-varying boundary 

disturbances. This effort is a comprehensive 

procedure for accurate boundary control of the 

gantry flexible manipulator system with 

transverse vibration and large rotational angle 

regulation. Moreover, it is worth to remark 

that, the control designing and stability 

procedures are based on original hybrid PDE-

ODE proposed governing equations without 

any simplifications in order to overcome 

accurate positioning. Comparing with the 

existing studies, the main contributions of this 

research are summarized as follows: 

i. Based on the Hamiltonian method, the 

original PDE-ODE equations of motion 

have been derived.   The proposed 

dynamical model involved the 

nonlinearities and coupling effects between 

the large rotational angle dynamics, 

gravitational force, the flexibility, the 

payload and base mass dynamics and the 

varying boundary disturbances, which all 

exert considerable influence on control 

design strategy. 

ii. A novel boundary control method for 

flexible gantry manipulator system by 

considering simultaneous vibrations 

suppression, large nonlinear angular 

rotation, base accurate positioning and 

avoiding any simplifications and spillover, 

have been proposed . 

iii. For mention controlling purposes, an 

initiative nonlinear Lyapunov design 

approach has utilized in order to establish 

control rules which ensure the exponential 

stability of the closed-loop system without 

considering boundary disturbances. 

Additionally, uniform boundedness of the 

closed-loop system under the unknown 

time-varying boundary disturbance by 

adding boundary observer is achieved. 

Moreover, the boundedness of all closed-

loop signals is also shown. These signals 

consist of the base’s horizontal 

displacement, rotational angle, and 

boundary deflection and shear measurement 

with their derivatives which make them 

practical. 

The rest of this paper is organized as follows. 

Section 2 introduces the system kinematics and 

dynamics. Section 3 is dedicated to some 

preliminaries. Section 4 consists of designing 

boundary control rules by utilizing the 

Lyapunov method in which a complex and 

proper Lyapunov functional will be adopted. 

Moreover, also based on over mentioned 

control inputs the exponential stability and 

uniform boundedness of the closed-loop 

system in the absence and presence of 

boundary disturbance have shown 

respectively. Section 5 includes simulation 

results, presented in order to show the 

effectiveness of the boundary control 

approach. Eventually, the conclusions are 

summarized in Section 6. 

 

2. Mathematical Modeling 

Figure 2 shows the schematic diagram of the 

proposed system consisting of a portable base, 

flexible arm, and payload at the bottom. Frame 

XOY is the fixed inertial frame, and the motion 

of the system takes place in a vertical plane . 

Let t be the time, x the spatial coordinate along 

the longitude of flexible link, w(x , t) the 

transverse displacement due to lateral 

vibrations of the flexible link at the spatial 

coordinate x  and time t,  θ(t) is rotational angle 

and  𝜃̇(t), 𝜃̈(t) are first and second order 

corresponding derivatives respect to time  and 

η(t) and 𝜂̇(t) refer to trolley position and 

velocity respectively . Moreover, let m1 and m2 

represent the equivalent mass of base and 

payload respectively, l denotes the length of 

link, ρ the mass per unit of length and the 

subscripts x; t denotes the partial derivatives 

with respect to x; t, respectively. 

.  
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Fig 2. Schematic of flexible gantry manipulator with input 

forces and boundary disturbance 

 

The kinetic energy of the Gantry flexible 

manipulator system can be represented as: 

( )
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𝑣𝑥 and 𝑣𝑦 denote the velocity vectors of 

flexible system in x and y direction and can be 

defined as: 
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Using equations (1) ,(2) and (3) the kinetic 

energy can be rewritten as: 
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The potential energy ( )pE t  due to the strain 

and gravity potential energy can be shown by: 

1 2p p pE E E= +            (5) 

In which 

( )
2
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In order to obtain the equations of motion, the 

extended Hamiltonian principle is applied. 

( )
2

1

0

t

e

t

T V W dt  − + =          (8) 

eW , , w and      represent the virtual  

work, the virtual base displacement,  virtual 
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elastic transverse displacement and virtual 

rigid body angular rotation respectively. 

The total virtual work done on the system due 

to external disturbance and control forces on 

trolley and payload is given by: 

1 3

3

( ( )) ( ( ) ( )) ( , )

( ( ) ( ) ( ))

ew F t F t d t w l t

F t l d t l t

  

 

= + +

+ + +                
(9) 

Assumption 1.  For unknown boundary 

disturbance ( )d t , its derivative ( )d t is bounded 

by positive constant D + , such that

( ) Dd t  , ( ) [0, )t   . 

1( )F t is the control force on the trolley 

respectively, ( )t is the control torque exerted 

on the hub and similarly 3( )F t and ( )d t  are the 

control force and the external disturbance on 

the payload respectively and by integration by 

parts and some simplifications equation  (8) 

can written as: 
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Letting 1( , ) 0x t = , 2 ( , ) 0x t = , 3( , ) 0x t =  

and 5 ( , ) 0x t = , the equations of motion and 

the boundary conditions can be obtained as 

following: 
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3. Mathematical Preliminaries 

For a better understanding of subsequent 

analysis, some lemmas are mentioned as 

following: 

Lemma 1 (Rahn, 2001). Let 1 2( , ), ( , )u x t u x t   

  R   with x  [0, ]L   and [0, ]t   the 

following inequalities hold:    

2 2
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Similarly, from (1) we can show that: 
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Lemma 2 (Rahn, 2001), (Do and Pan, 2008) 

and (Hardy et al., 1959). Let ( , )u x t    R  with 

x  [0, ]L   and [0, ]t   which satisfies the 

boundary condition (0, ) 0u t = , [0, ]t      

the following inequalities hold: 
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In addition, if ( , )u x t  satisfies the boundary 

condition (0, ) 0xu t = , the following inequality 

holds: 

2 2

0

( , ) ( , )

l

x xxu x t l u x t dx          (19) 

Equalities (15) , (16), (18) and (19) are utilized 

through stability analysis to indicate 

boundedness of Lyapunov function and its time 

derivative. Based on clamped boundary 

condition ( (0, ) 0w t = ), equality (17)  is used in 

order to express that during closed-loop 

process, all system signals remain bounded. 

 

Assumption 2. Based on kinetic and potential 

energy in equations (4) and (6) for proposed 

crane system the following properties hold: 

Property 1 (Queiroz et al., 1999, 2001). If the 

kinetic energy of system is bounded 

[0, )t    then ( ) ( , )
n

n tw x t
x




 is bounded 

for 0,1,2n =  , [0, )t   and [0, ]x l   . 

Property 2 (Queiroz et al., 1999, 2001). If the 

potential energy of system is bounded 

[0, )t    then ( ) ( , )
n

n xw x t
x




 is bounded 

for 1, 2n =  , [0, )t   and [0, ]x l  . 

Remark 3. From a strictly mathematical point 

of view, one might question the above 

boundedness properties. However, from an 

engineering point of view, it seems reasonable 

to assume for a real physical system that if the 

energy of the system is bounded, then all the 

signals which make up the governing dynamic 

equations will also remain bounded(de Queiroz 

et al., 2001) 

 

4. Control design  

Based on the control scheme, as shown in 

Figure 2  the main achievement of this paper is 

relay on designing boundary signals 𝐹1 , 𝐹2 and

( )t  , which are cooperatively exerted on 

boundaries and hub. Mentioned signals are 

employed to analyze the stability of the closed-

loop system which leads to achieving the 

control objectives :(i) drive manipulator’s base 

to the desired position  𝜂𝑑 (ii) suppress the 

transverse vibration of the arm and regulate the 

rotational angle i.e., to guarantee ( , ) 0w x t →  
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and ( ) 0t →   in the presence of the unknown 

varying disturbances. The following control 

laws are proposed: 

 

Figure 2 Block diagram of feedback control of flexible gantry manipulator system based on boundary control strategy 
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−

+
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3 2( ) ( )F t k t= −
                                 (22) 

In which 1 2 3, ,k k k and 4k  are positive control 

gains and auxiliary function ( )t defines as: 

( )
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)

t

xxx s

w l t l t

w l t

t
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

+

−

=

+
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Remark 4. In implementing the control laws, 

some of the proposed feed backed signals can 

be measured by existing sensors and the rest 

can be obtained by calculations(He et al., 

2013a). ( ),xxxw l t can be measured by shear 

force sensor at boundary ( ),tw l t  and 

( , )xxxtw l t  can be calculated by backward 

differencing. ( )t  and ( )t can be obtained by 

position and velocity sensors respectively. At 

last ( )t  and velocity ( )t  can be determined 

by rotary encoder and tachometer respectively. 

In this work the Lyapunov candidate can be 

defined as: 

( )

2 3

2

1

2

( ) ( ) ( ) ( )

)( ) (
2 2

pk k
e t

V t V t V t

s t

V t

in 

= + +

++
        (24) 

Where  , , pk , k   are positive terms. To 

achieve control objectives, we define the base 

position set point error ( )e t . 1V  is defined 

based on the total mechanical energy of the 

string. 2V  is determined based on the kinetic 

energy of the base and payload mass and at last 

3V  is defined in order to competence the 

stability procedure .they are defined as: 

𝑤ሺ𝑙, 𝑡ሻ, 𝑤𝑥𝑥𝑥ሺ𝑙, 𝑡ሻ, 𝑤𝑡ሺ𝑙, 𝑡ሻ, 𝑤𝑥𝑥𝑥𝑡ሺ𝑙, 𝑡ሻ, 𝑒ሺ𝑡ሻ, 𝜂̇ሺ𝑡ሻ, 𝜃ሺ𝑡ሻ, 𝜃̇ሺ𝑡ሻ 

Boundary 

Controller 

Actuator on Base 

Actuator on Payload 

Gantry 

Robot 

𝑑ሺ𝑡ሻ 

Torque on Hub 
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Lemma3. The Lyapunov function candidate 

(24) is bounded by positive variables as 

following: 
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1
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The auxiliary variable ( )t  is defined as: 

2

0

2 2 2 2

0

( , )
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l

t
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x x
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Proof. Based on equations (16), (25) and 

adding two positive terms ( )2 2,
2 2

pk k
e sin   it 

is concluded that ( )2 2

1
2 2

pk k
V e sin + +  is 

upper bounded as: 
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By having 
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2 2 2
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+ 
 and 

based on definition of ( )t   in equation (30) we 

can rewrite equality (31) as:    
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From definition of 2V  in equation (10) and 

inequality (1) and by having 

1,
1 2
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2

m
b m

 
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 
and 1,

2 2
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2
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 
=  
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which is positive weighting constant, we can 

show that is bounded as following:   
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Also in similar manner based on equations (15)

, (16) and (27) it is shown that: 
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Based on relations (17) and (18) it can be 

shown 2 4 2

0 0
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xxw x t dx l w x t dx   and 

2 3 2
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relation (34) can be rewritten as: 
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By adding equalities (31) ,(33) and (35) based 

on defining positive constants as following: 
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Furthermore 

( )5 1 02 4 sl lb k   += + −  and 

( )6 1 4 skb l   + += + . Considering,

( )7 0
2

s

k
k g EI  += − +   and

( )8
2

s

k
EI k g  = + + + , the Lyapunov 

candidate function relation (29) is proved. 

where 19 3 5 7min , )( , ,   =  and 

210 4 6 8, )max( , ,   = are positive constants. 

 Theorem 1. For the system dynamics 

described by (11) , (12) and (13) , boundary 

conditions (14), using the proposed boundary 

control laws (20), (21) and (22) , if the initial 

conditions are bounded, then the system is 

regulated asymptotically in the following 

sense: 

lim ( , ) 0
t

w x t
→

=
 , 

lim ( ) 0
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=
, 

lim ( ) 0
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e t
→

=
  

Proof. Differentiating Lyapunov candidate 

equation (24) respect to time leads to: 
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The first term of equation (36) can be 

represented as: 
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                       (37) 

In which 1 2( ), ( )E t E t can be shown as: 

 

( )( ) ( )

( ) ( ) ( )
1

0

2

0

x

t tt
l

l

xxt

t

x

t t

E
w w w w

w cos
d

w

w

x

dE

x

wI x



 






+  
=

+

+ +
 
  




         (38) 

( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

2

2

0 2

}

{

tt

tt

l

t

t

x w

xcos xcos

xsin

w cos w sin

wsin wsin

w sin

wcos w x dx

E



 



 

 

 

   

 

  

   

 

  

+ +

+ +

− +

−

− −

−

− +

= 

      
(39)

 

By substituting equation of motion (13) into 

equation (38) we obtain:  
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By integration by part and from the definition 

of auxiliary function ( )t , equation (40) yields 

to: 
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Based on (16), differentiating 2 ( )V t  yields to: 
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Differentiating 3( )V t  yields to: 
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By substituting equation of motion (13) into 

equation (43) we obtain:  
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Furthermore based on ( )0 1cos     we have: 
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 
 

−

 − 

+

−

+

−

−




         

(45)

 

( )
( )

( )

2

0

2 2

0

2 2

2

2

( , )

( )

(

(

( )

)

, )

( )
2

l

s

s
s

t

l

t

s s

x t
k

w x t
cos dx

cos t

w dx

cos

t

k
k x t

lk k l t


 










    






 +
 

 + 

+

+ +




         (46) 

( )
0

4
2 2

3

3 0

( ) ( ) ( , )

( ) ( , )

l

l

xx

g t cos t w x t dx

gl
g t w x t dx

  


  





+





         (47) 

In similar way by differentiating 4 ( )V t  one can 

attain: 

( )

( )

( )

4

0

0

( , )

( )

( ) ( )

( )

( ) ( )

( ) (

( , )

( , )

( , )

) ( )

t
l

xt

tt

l

x x

x t

x t

x t

x

w

V xw x t dx

t cos t

w

x t
xw d

t cos t

t

t

t sin t

 

 




 

  

+ 
 

=  
 + 

 
 
+ 

+  +
 
 − 





    

(48)

 

By substituting equation of motion (13) into 

(48) and some simplification yields to: 

( )

( )

( )

˙

0

0

2

0

4 ( )

( )

( , )

( , )

( , ) ( ,

(

)

)

t
l

xt

l

x xxxx

l

x

w

V

x t

x t

x t x t

xw
g

x w x t dx

t cos t

EI xw w dx

w sin
x d

sin

  

 



 
 

 

 
 

= + 
 + 

−

 
+  



+

 −







       (49) 

Equation (49) can represented as:  

4 1

˙

2 3( ) ( ) ( ) ( )t A t A t A tV = + +
          (50) 

which: 

( )

1

0

( )

( )

( )

( , )

( , )

( )

l

xt

t

A t xw

w

x t dx

t cos

t

x

t

x

t

 



 

=

 
 
+ 
 + 


                     (51) 

( )

( )

2

2

0

( )

l

xA x

w

xw sin d

sin

t g



  

 

 
 
 
 

= +

 − 

         (52) 

3

0

( ,{ )

( , )}

( )

l

x

xxxx

A

x

x

x

t EI x w t

w dt

= −             (53) 

Integrating equation (51) leads to: 
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( )

( )( )

2 2

1

0

2

0

0

,
( )  

2 2

2

l

t t

l

t t

l

xt

w l t w
A t l l dx

l w l x w dx

xw rcos dx

 

   

  

= −

+ −

+







  (54) 

Based on relation (16) it can be shown that: 

( )( )

( )

( )

0

1

3
2

2

0

3
2 2

2

2

1

( , ) ( ) ( )

,

3

( )

( )

(
3

,

)

l

xt

t

l

t

xw x t t cos t dx

l
w l t

l
w dx

l
co

t

tl

x

s t

   








  





+

 
+  

 





         
(55)

 

2

0

2 3
2

4

3

3
2

4
0

2

3

2

( , )

( , )

2

2 ( , )

( )2
3

( , )
3

t

l

t

l

t

t

l

x

tl w

x w x t d

l l
t

l w

l t

x t dx

l w

 

 








 



 
  
 

 
 
 

+

+

+





         (56) 

By substituting relations (55) and (56) into (54) 

it can be obtained: 

( )

( )

3 3

2

4

2

0

2 2
3

1

2 3
2

4

3

3
2 2

1

2

1( )

( , )

2
2 3 3

 
,

2

( )2
3

( ) ( )
3

l

t

t

A

o

t

x t

l l l

w dx

l l
l w l t

l l
t

l
t c s tl

 




 
 









  



 
− − −  
 

 
+ ++ 

 

 
  
 

 
+ +

+

  







         

(57)

 

Integrating equation (52) leads to: 

( )

( ) ( )( )

2 2

2 2

0

0

2 ( ,
2

)

l

l

x

l
w l t

w dx

x w gsin sin dx

A t






    

−

+ −

=





        
(58)

 

By integrating the third part of equation (58) on 

can obtain: 

( ) ( )( )

( ) ( )

( )

( )

0

0

3
2

5

3

5

0

( ) ( ) , ( )

( ) ( ) ( ) ( , )

3

( , )
3

l

x

l

l

x

xw gsin sin dx

l t t w l t sin t

l t t sin t w x t dx

g l
sin

l
g w x t dx

    

   

   






 

− 

−

+

+







       

(59)

 

Relation (59) also can be rewritten as: 

( ) ( )( )

( )

( ) ( )

0

2 2
6

7

2 2

7

0

3
2 2 2

6 5

3
2

5

0

( ) ( )

( )

( ) ,
3

( ,

( , )
3

)

l

x

l

l

xx

xw gsin sin dx

l
l t sin t

l t w dx

l g l
t w l t sin

l
g l w x t dx

x t

    


   



  

 
 

 

 

− 

 
 
 

+

+

+

+







       
(60)

 

Based on inequality (60), equation (58) yields 

to: 
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( )

( )

( )

( )

2 2

7

0

2 2

6

2 2
6

7

3
2

5

2

5

3
2

0

( ) ,
2

( ) ( )

3

( ,

(

3

)

)

l

l

xx

l w dx

l l
t w l t

l
l t sin t

g l
sin

l
g l w x t dx

A t    


 




   








 

− −

 
++ 

 

 
 
 

+

+



+





         (61) 

By integrating by parts, 3( )A t yields to: 

0

3

0

( , ) ( , )

( , ) ( , )

( , ) (

(

, )

) x xxx

L

x xxx

L

xx xxx

A EILw l t w l t

EI w x t w x t dx

EI x w d

t

x t w x t x







+

+

= −





         (62) 

By integrating relation(62), 2 ( )A t can be 

obtained as follows: 

2

3

0

( , ) ( , )

3 / 2 ( , )

x xxx

L

xx

EILw l t w l t

EI w x t dx

A 

−

 −


         (63) 

Based on (16) and (19) Relation (63) also can 

be rewritten as: 

( )

2

3

8

2

8
0

( , )

3 ( , )
2

xxx

L

xx

EIl
w l t

EI w x t dx

A

l





 − −





         (64) 

By substituting (57), (61) and (64) into (50), 

4V  can be determined as following: 

( )

( )

( ) ( )

3
2

58

2

0

2 2

7

0

3 3

2

4

2

0

2

3

1

2 2

8

2 3
2

4

3

4

6

3
2 3

2
2 3 3

 

2

, ,

(

( , )

(

)

, )

2
3

2

l

xx

l

l

t

t xxx

V

x t

x

l
EI g ll

w dx

l w dx

l l l

w dx

l l
l

EIl
w l t w l t

l l

l l

t

t

  

   

 




 
 













 



 
− −− 

 

− −

 
− − −  
 

 
+ ++ 

 

 
+  
 

 
++ 

 



+







( )

( )

( )

( )

2 2

3
2 2

1

2

2 2

3
2

5

6

7

( ) ,

( ) ( )
3

( ) ( )

3

t w l t

l
t cos tl

l
l t sin t

g l
sin


  




  









 
+ +  
 

 
+ 

+

+
 

  

(65)

 

By introducing following relations as follows: 

( )

( )

( ) ( )( )

3
2 2

1

2

2

2

6

2

2 2

2 2 2

7

( ) ( )
3

( ) ( )

l
t cos tl

l
l t sin t

sin cos





  




  

   

 
+  



+



 
+ 
 

 +

         (66) 

In which  

3

6

2

1

2 7

max ,
3

l l
l l

 
    






 
= +  

 
+  

and also: 

By substituting equations (64),  (65) and (66)  

into (36), then we have: 
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( )

( )

( )

8

2
3 4

2
0

5

3

2

2

0

3

1

3

2

4

2

0

2 3

4

3

7

2

2

1

2

2

1

( , )

( )

( , )

( , )

( )

3
2

3

2
2 3 3

2

2
2

3

s

l

xx

l

t

s

s

l

s

V

x t

k t

x t

k

x

x

EI l

w d
l gl

g l

l

w dx

l l l

w d

I

xt

tk EI

E l
k

k

l

k

l

 



 






 


 



   





 




 





 −
 
 −
 − − 
 

− −





−





− −

+

 
− − − −  
 


−   

 −

+

+

−







( )

( ) ( )

( )

3

2

2

2

3

2 2

6

2

4

8

2 2
3

1

3
2

2

5

2

( )

( ) ,
2

,

 
,

2 2

sin ( )
3

2

2

s

xxx

s

t

s

lk

EI

E

t

g

l l
k t w l t

EIl
w l t k

l l
l w l t

g l

I

k k gl



 









  




 



 
 










 
 
 
 
 
 
 

 
− −− 

 

 
−− − 

 

 
− −

− −

−

 
− + −  

−−

 


 

   

(67)

 

    

The positive parameters  

1 4 1 1 11 1 8, , , , , , , , andp e sk k k k k k    − −−

are determined in order to fulfill following 

relations:  

( )8

3 4

3

1

2

5

3
2

3
0

EI l

l gl
g l

 


 





−

− −

=



          (68) 

2 7 1 0skl   = − −
         (69) 

4

3

2

3

3

2

2

0

2 3

3

s

l l

kl





 






−

−

=

−

           

(70) 

3

4

3

4 9

2

4

1 0

2
2 3

3

e s

l l

kkl

 













− − −

=



−

          (71) 

5 1 2 0k EI  = − 
           (72) 

2

6 2

2

1

2

2 3

4

3

3

2
3

2

0
2

s
s

s

EIl
k

k

l

k

lk

l

g




 





 








= +

+

−

−


−  

−




+



           (73) 

37

6

0
2

l l
k


 


−= −           (74) 

8

8 0
2

EE IlI 



−=             (75) 

49 0k  = − 
           (76) 

1

10

2 
0

2 2

I
l

E l l


 
 


− −= −           (77) 

2

11 3

1

 
0

2 2

l lE
l

I


 
 


− −= −          (78) 

2

12

3

5

0
3

s sk k gl
g l







= + −          (79) 
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Also relation (67) implies that 

2 2 2

2

11

0

( )

( ) s

(

)

, )

( i () n

l

xxw x t dx

t

t

t

V







 

 
 
  −
 
 
 +

+

+ +

 , in which 

13 is positive constant by definition

( )13 1 2 3 12min , , ,...,    = . Also there exist 

2 2

0

2 2 2

( )

( ) sin ( )

( , ) ( )

l

xxt

e t

w x t dx t

 

+ +

+ + +


 is bounded. 

Because all terms are all positive, then 
2 2( , ), ( )( ), xxw x t tt  and 

2( )t are all 

bounded, based on boundedness of ( )t ,

( , )tw x t , ( )t are bounded [0, )t   and 

[0, ]x l  . So boundedness of the total 

mechanical energy of the string system is 

obtained. From properties 1 and 2, ( , )xxxtw x t  

and ( , )xxxxw x t  are bounded [0, )t   and

[0, ]x l  . From equation of motions (11), 

(12) and (13) it will be concluded that ( , )ttw x t  

, ( )t  and ( )t  are all bounded [0, )t   and

[0, ]x l  . Based on all above statements it 

can be concluded that the controls signals are 

bounded and all the signals in closed loop 

system remains bounded. 

 

5. Simulation Results 

Based on finite difference method, the solution 

for proposed system which has been described 

by (11), (12) and (13) with the boundary 

conditions (14) is approximated. This method 

provides an accurate process for solving 

differential equations (He, He, et al., 2015). 

Consider proposed system excited by boundary 

disturbance ( ) 0.1sin(0.1 )d t t=  with initial 

conditions
0

0 40 = , 0 0 =  , ( ,0) 0w x =  and

( ,0) 0tw x = . The objective of this section is to 

demonstrate the performance of the proposed 

control laws (20), (21) , (22) and disturbance 

observer. The other specifications are 

presented in Table 1. 

 

 

 

Table 1. Gantry manipulator specifications  

Parameter Description Value 

l  Length of manipulator 0.8 m  

1m  Mass of base 5 kg  

2m  Mass of tip payload 4 kg  

  Uniform mass per unit length 0.2 /kg m  

EI  Bending stiffness of manipulator 28 Nm  

I  Inertial of the hub 20.3 /kg m  

d  Desired position 1 m  

 

In order to evaluate the control performance, 

two cases are compared. First, the behavior of 

the system without control inputs is shown. 

Then the effectiveness of proposed control 

inputs is illustrated by applying them to the 

system. The manipulator position, the three-
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dimensional representation of the transverse 

vibration of the manipulator, the deflection of 

the four equi-distanced points on the link, and 

the angular position are shown in Figures 4-7 

respectively. This implicates that the system is 

thoroughly unstable in the absence of feedback 

control inputs. 

 
Figure 3. Manipulator position without control 

 

 
Figure 5. Transverse displacement   of flexible 

manipulator without control 

 

As it is shown, due to boundary disturbance, 

the manipulator position is far beyond the 

desired position and the angular position is far 

away from regulation point. Moreover, the 

flexible manipulator is subjected to the large 

vibrations relative to its length which cannot be 

ignored. 

 
Figure 4. The deflection of the four equi-distanced 

points on the link without control 

 

 
Figure 7. The angular position of flexible manipulator 

without control 

 

In the second case, in order to reach the control 

objectives and guarantee the best performance 

of the controller, the simulation performed by 

applying proposed control laws with proper 

parameters. Mentioned control gains are taken 

cautiously by a large number of trials. 

Furthermore, they must satisfy relations 

1 11 1 8, − −  and  (29) which all lead to reach the 

best performance of the controller. 

Accordingly, the proposed parameters are 

chosen as 3 = , 0.01 = , 1 0.02ek = , 

0.01sk = , 1 2 10 − = , 3 1 = , 4 0.52 = , 

5 98 = , 6 9 1 − = , 10 0.1 = , 11 1 = , 12 26 = ,

13 12.4 = , 14 15 1 − = , 1 1100k = , 2 7k = ,

3 1.5k = , 4 1k = , 70k =  and 260pk = .  

Figure 8 shows that the system is driven to the 

desired position within 6 seconds. It is 

noticeable, the deflections due to the 

vibrations, are suppressed as a result of the 

feedback proposed control inputs shown in the 

figures 9-10. Moreover, according to Figure 11 

the angular position is greatly regulated within 

7 Sec. 

 
Figure 5. Manipulator position with control 
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Figure 6. Transverse displacement ( , )w x t  of flexible 

manipulator without control 

 

 
Figure 7. The deflection of the four equi-distanced 

points on the link without control 

 
Figure 8. The angular position of flexible manipulator 

without control 

 

6. Conclusion 

In this paper, based on Hamiltonian, 

dynamic PDE-ODE representation of a flexible 

gantry robot manipulator under time-varying 

boundary disturbance with rigid body 

nonlinear large angular position and translation 

has been derived. In order to achieve precise 

locating of system, a new boundary control 

procedure has been introduced based on the 

original hybrid PDE-ODE dynamic modelling 

without any simplification in which all 

nonlinearities and gravitational force has been 

considered. Indeed, based on a novel proposed 

control schemes, by designing boundary 

control laws and boundary disturbance 

observer, transverse vibration and nonlinear 

angular position have been regulated with 

exponential decay rate, manipulator steered to 

the desired position, and boundary disturbance 

has estimated simultaneously. Based on the 

Lyapunov direct method, the ultimate 

boundedness of closed-loop system has been 

achieved. Numerical simulations illustrate the 

effectiveness of the nonlinear proposed 

controller and observer . 
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