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 Wheeled Mobile Robots (WMRs) are simple, easy to move on hard and level terrain and 

can be controlled effectively. Due to these merits, many researchers have studied the 

challenges of WMRs. To improve the payload transportation capability of wheeled 

vehicles, one or several platform, named as trailer, may towed to a tractor wheeled 

platform. In the current paper, for the first time, the motion control of such tractor trailer 

systems is addressed while the actuator dynamics is considered. Toward this goal, the 

system kinematics and dynamics will be derived and will be coupled to its actuators 

model. To control the considered nonholonomic system, the technique of input-output 

feedback linearization along with look-ahead point notion will be utilized. Besides, some 

of the imprecise parameters in the proposed model-based controller are identified in an 

on-line manner. The obtained computer simulation results support the soundness of the 

proposed controller. 
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1. Introduction  

Robotic systems provide different services in 
various environments based on the mission 
requirements. The robotic systems may consist of 
dexterous manipulation and locomotion divisions. 
While the manipulation part provides the capability of 
the dexterous operation on the environment, the 
locomotion is responsible for the robot motion in the 
environment. Based on the environment, and the 
mission requirements, the robot locomotion may be 
different. The robots could be flying, move on the 
surface (ground) or travel underwater. The ground 
robots locomotion would mainly be wheeled, legged, 
tracked or some combination of the three 
aforementioned mechanisms.   

Among various locomotion mechanisms of the 
robots, the wheels are simple, easy to control and fast 
for motion over hard even terrains. 

 

 These advantages have encouraged the researchers 
to focus on solving the challenges of the wheeled 
robots, [1], [2]. While the single-platform wheeled 
robots are advantageous, their payload carrying capacity 
is limited. In order to improve the payload carrying 
capacity and preserving the system maneuverability, 
another wheeled platform(s) is (are) connected to the 
active platform.  Such wheeled robots are called tractor-
trailer wheeled robots (TTWRs). The active platform 
which provide the overall system driving is called 
tractor while the other wheeled platforms which are 
passive are called trailers, see Fig. 1.   
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Fig. 1: The considred tractor-triler wheeld robot system 

 
While such systems have been studied from the view 

point of motion planning [3-5], few works have been 
presented in the field of automatic control.  

In the motion control field of the wheeled robots, 
there exist three types of problem including trajectory 
tracking, path following and posture stabilization [6]. 
The aim of trajectory tracking is that the desired 
trajectories associated with the coordinates of a 
reference point of the robot could be tracked. In [7], 
considering the trailer linear velocity and tractor angular 
velocity as control inputs, the trajectories of a reference 
point of the trailer have been controlled. To this end, the 
linear model predictive control technique has been 
utilized. In [8], first a Lyapunov-based kinematic 
controller has been designed for TTWRs. Then, a 
dynamic controller has been designed such that it can 
provide the required velocities of the kinematic 
controller using torques of the tractor wheels. In [9], the 
trajectory tracking of TTWRs has been realized using 
the notion of Modified Transpose Jacobian (MTJ) 
controller. One of the advantages of the use of MTJ is 
its simplicity and its independency from the robot 
dynamic model parameters. In [10], a TTWR is 
considered in which the trailer wheels are spherical. The 
considered under-actuated system is modeled and then 
is controlled using a physics based PID controller. The 
stability of the controller has been proven using the 
Lyapunov second method.  

While few controllers have just been recently 
proposed to control TTWRs motion, most of them 
assume that the precise parameters of the robot are 
available. Besides, most of them ignore the actuators 
dynamics. Consequently, in the percent work, the 
considered TTWR is modeled and controlled while the 
actuator dynamics is taken into account. Besides, the 
values of some of the uncertain parameters of the robot 
and its actuators are identified. To control the robot, the 
input-output feedback linearization control technique is 
utilized adopting the look-ahead control strategy [11].  

The rest of the present article is arranged as follows. 
In Section 2, the considered system is described and its 

kinematics and dynamics are derived. Then, in Section 
3, the nonlinear developed controller as well as 
identification methods are introduced. In Section 4, the 
obtained simulation results are discussed. Some 
conclusions will be given in the last section. 

2. SYSTEM DESCIPTION AND ITS KINEMATICS AND 

DYNAMICS 

2.1. SYSTEM DESCRIBTION 

 

The considered system is composed of two wheeled 

platforms, as shown in Fig. 1. Each platform contains 

there wheels where two of them are conventional 

wheels and mounted at the rear of the platform. The 

third wheel is of type spherical and is utilized to 

enhance the equilibrium of the system. The wheeled 

platform whose rear wheels are active is named as the 

tractor while the other platform is called trailer. Since 

the two real wheels of the tractor are independently 

driven by electric DC motors, the tractor is of type 

differentially-driven platform and kinematically 

equivalent to unicycle type mobile robot, [12].  

In Fig. 1, the various geometrical parameters of the 

robot is shown. Ntc  and Ntr represent the midpoint of 

the rear axle of the tractor and the trailer, respectively. 

Also, x  and y  denote the Cartesian coordinates of 

point Ntr in inertial XY  frame. Besides, 0  and 1  

denote the heading angle of the tractor and the trailer 

with respect to X axis of inertial frame, respectively. 

Moreover, Gtc  and Gtr denote the center of mass of 

the tractor and the trailer, respectively. In addition, 

w and r indicate the half of distance between center of 

wheels and the radius of wheels, respectively. 

 

2.2. System Kinematics and Dynamics 

 

To describe the system configuration, the following 

entities of vector μ  are selected 

T

1 0[ ]x y  =μ  (1) 

It is recalled that the elements of vector μ was 

explained in the former subsection. Herein, it is tried to 

examine the system kinematics and also derive the 

relation between the angular velocity of actuation 

wheels and the generalized velocities, i.e. μ  . If the 

angular displacements of the tractor right and left active 

wheels are denoted by r  and l , respectively, then 

the following relations can be written  
T

0 0r [cos sin ]rw rv   =  

(2) 
T

0 0r [cos sin ]lw lv   =  
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where rwv  and lwv  denote the linear velocity of the 

right and the left active wheels of the tractor, 

respectively. Notice that the above relations are correct 

provided that the wheels are subject to pure rolling 

condition. Also, as the linear velocity of the point Ntc  

relative to the tractor active wheels is perpendicular to 

the line connecting the aforementioned wheels centers, 

then it can be concluded that 

 

0tan tc tcy x =  (3) 

or  

0 0sin cos 0tc tcx y − =  (4) 

where tcx  and tcy  denote the Cartesian coordinates of 

the point Ntc in XY  frame. Also, the following 

relations hold between coordinates of the points Ntc and 

Ntr . 

1 0tc tr tcx x l c l c = + +  

(5) 
1 0tc tr tcy x l s l s = + +  

where c  and s  stand for functions cos and sin, 

respectively. By substituting (5) into (4), the following 

result is obtained. 

0 0 0 11sin cos ( ) 0x y lc    − − − =  (6) 

 The recent relation is a non-integrable constraint and 

hence the TTWR is a nonholonomic mechanical 

system.  

By similar argument about the linear velocity of point 

Ntr , the following results is achieved. 

 

1 1
sin cos 0x y − =  (7) 

The above relation is also nonholonomic which along 

with (6) can be written in the following compact matrix 

format. 

( ) =ζ μ μ 0  (8) 

in which 

0 0 0 1

1 1

sin cos cos( ) 0

sin cos 0 0

l   

 
=

− − −

−

 
 
 

ζ  (9) 

where trl l=  if it is assumed that the on-axle hitching 

case is examined, i.e. 0tcl = .    

By writing the kinematic equation relating the linear 

velocity of the right and the left active wheels of 

tractor, then the following result is obtained. 

0 ( )
2

r l

r

w
  = −  (10) 

If 
trN  is defined as the value (with sign) of the linear 

velocity of the point Ntr , then by velocity analysis of 

the points Ntr and F, the following result can be 

obtained. 

0 1( )cos( )
2trN r l

r
    = + −  (11) 

 

 considering (10) and (11), the following imaginary 

kinematic input is defined as 

1

2 0

0 1 0 1
cos( ) cos( )

2 2

2 2

trN r

l

u

u

r r

r r

w w

 



   

= = =

− −

−

    
    

    

 
 

=  
 
  

u Λ

Λ

 (12) 

 

As seen the map between virtual kinematic input u  and 

active wheels’ angular velocities is one-to-one. Hence, 

they are equivalent and can be utilized interchangeably. 

Since, the wheels of the trailer do not slip sideways, the 

following two relations can be written. 

1 1cosx u =  

(13) 

1 1siny u =  

Considering (10) the magnitude of the velocity of the 

point Ntc (with its sign) can be written in terms of the 

tractor wheels’ velocities as 

 ( )
2tcN r l

r
  = +  (14) 

By recalling the point that in the present study, 0tcl = , 

and writing the linear velocity relation between 

points Ntc and Ntr , and using (14), (13), and (12), the 

following result is concluded. 

1 0 1 1

1
tan( ) u

l
  = −  (15) 

The relations (13), (15) and (10) using (12) can be 

written in the following compact from. 

( )= μ Q μ u  (16) 

where 

 

T 1 1 0 1

1
c tan( ) 0

0 0 0 1

s
l

   
 

− =
 
 

Q  (17) 
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As seen, (16) indicates that the first-order kinematics of 

the system is driftless, [12]. Also, one can conclude that 

the two independent columns of matrix Q span the 

admissible generalized velocities μ . 

Now, the system dynamics model is extracted. In this 

regard, first the system Lagrangian is obtained. As the 

robot system has planar motion its Lagrangian L can 

be written as below if the wheels’ mass is ignored.  

2 2 2 2

0 1

1 1 1 1
( , )

2 2 2 2tc trtc G tc tr G tr
L m I m I   = + + +μ μ  (18) 

where 
tc

m and 
tr

m represent the tractor and the trailer 

masses, respectively. Also, 
tc

I and 
tr

I represent the 

tractor and the trailer mass moments of inertia about 

their associated center of mass, respectively. Besides, 

tcG  and 
trG denote the linear velocity value of center 

of masses of the tractor and the trailer, respectively. 

Note that if the right-hand side of the above equation is 

written in terms of μ and μ , then by its substitution in 

the constrained Lagrange formulation, the following is 

resulted. 

 
T

( ) ( , ) ( ) ( )+ = +Α μ μ n μ μ μ E μ Τ ζ μ λ  (19) 

where Α represents the configuration dependent 

mass/inertia matrix and μn is the vector containing the 

Coriolis and centripetal forces, [13]. Besides, E is 

input matrix which transfers the effect of the wheels 

actuating torques Τ to the generalized forces. Also, 

λ denotes the 2 1  vector of Lagrange multipliers. 

Now, by premultiplication of the above relation by 
T

Q , and substituting of μ  by the right-hand side of 

(15), the following reduced dynamics model is 

achieved. 
T

, ) ( )(+ =u μ u u E μ ΤM C Q  (20) 

where 
T

T T

( ) ( )

( , ) ( ) ( , )

=

= +

M μ Q Α μ Q

C μ u Q Α μ Q Q n μ μ Q
 (21) 

Note that (20) is obtained since the columns of the 

matrix Q belong to the null-space of the matrix 

( )ζ μ and consequently, =ζQ 0 . 

 

2.3. Actuator Model 

The relation between the voltage source of armature 
circuit and its current can be described by the following 
first-order differential equation, [13]. 

A A A A A e mi il R v k + = −  (22) 

where Al and AR denote, the inductance and resistance 

of the armature circuit, respectively. Besides, Ai and 

Av denote the current and source voltage of the 

armature windings, respectively. Also, ek indicate the 

back-electromotive force constant of the motor and 

m
 shows the angular velocity of the motor. In motors, 

the inductances are ignorable and the produced torque 

( m ) is related to the current flows in the armature 

windings as m m Ak i = . Note that mk is the motor 

torque constant. Hence, (20) is written as 

A
m A e m

m

R
v k

k
 = −  (23) 

If the motor is not direct drive and connected to the load 
via a gear reduction module then the following result is 
obtained 

eA
A

m

kR
v

K
 


= −  (24) 

where 1  is the ratio of the gear reduction module. 

Moreover,  and  denote the torque and angular 

velocity delivered to the load. 

If it is assumed that the tractor motors and their 
associated gearboxes are similar, then by applying (24) 
to the right and the left motors of the tractor, the 
following result is achieved. 

1 2

r

l

Ar r

l A l

v

v

 
 

 
=

    
= −    

     

Τ  (25) 

where  

1 2 2
, e mm

A A

k kk

R R
 

 
= =  (26) 

Substituting (12) into (25), the following result is 
obtained. 

1

1 2

r

l

Ar

l A

v

v


 



−
=

  
= −  

    

Τ Λ u  (27) 

If the right hand side of the above relation is substituted 
for Τ  in (20), then the following relation is achieved. 

( ) ( ) ( ) ( ) ( )1, at t  +  = M μ u C μ μ u B μ v  (28) 

where 
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T

T 1

2

( )

, ) ( )

( )

(

r

l

A

a

A

v

v

 −
= +

=

 
=  
  

=μ E μ

C μ u E μ

M M

v

B Q

C Q Λ

 (29) 

FEEDBACK LINEARIZATION CONTROL AND SYSTEM 

IDENTIFICATION  

In order to design a trajectory tracking controller for 
the system, the dynamical equation of the system should 

be considered. The M , C  and B matrices, can be 

expressed as follows. 

( )
2

0 12
tan ( ) 0

0

tr
s

tc

I
M

l

I

 
 

+ − =
 
  

M μ  

( )
11 12

2

12 2 2

,
2

c c

w
c

r


− 
 =
 
  

C μ μ  

( ) ( ) ( )0 1 0 1

1 1
1

cos cos
r

w w

   

 
 − −=
 
 − 

B μ  

(30) 

where 

( )
0

12

0 1cos

s tc tr

tc tc

M m m

c c m


 

= +

=
−

 

( )

( )

( )

( ) ( )

0 1

11 12 3

0 1

0 1 2

02 3 2 2

0 1 0 1

sin

cos

sin 1
2

cos cos

tr

tr

I
c

l

I

l r

 


 

  


   

−
= − +

−

−
+

− −

 

(31) 

Considering the kinematics and dynamics of the 
system, i.e. (28) and (16), the following state space 
representation will be obtained in control affine 
arrangement. 

11

1

0
a

 −−

  
= +    −   

Qu
η v

M BM Cu
 (32) 

where 
TT T =

 
η μ u  is the state vector. This 

representation helps us to solve the trajectory tracking 
control problem via feedback linearization approach. 

The above equation can be rewritten as follows. 

( ) ( )( ) , , ah b f= + +η η η θ η θ v  (33) 

where we have 

( ) ( )
( )

( )
( )1

0
, , ,

,0

0
,

,

h b
J

f
F



  
= =   
   

 
=  

 

Qu
η η θ

η θ

η θ
η θ

 (34) 

The goal of control system is that using voltages 
applied to the wheels motors, i.e. va, as control inputs, 
the trajectory tracked by point Ntr, i.e. [x(t) y(t)],be as 
close as possible to the desired reference trajectory. 
Consequently, va should be adjusted so as 

( ) ( )lim ( ) ( ) 0 , lim ( ) ( ) 0des des
t t

x t x t y t y t
→ →

− = − =  
(35) 

The following output are selected as a desired 
trajectory to be tracked by the system based on look-
ahead control approach, [11]. 

0 1

0 1

cos(2 )

sin(2 )

x D
C

y D

 

 

+ − 
=  

+ − 
 (36) 

It is recalled that if D in (36), which is named as 
look-ahead distance, is considered to be zero, then the 
system will not be input-output linearizable, based on 
the next equations. 

It should be noted that, it is assumed the system is 
controllable, the internal dynamics of the system is 
stable, and choosing an appropriate set of output 
equations, cause the system to be input–output 
linearizable. 

The known approach to find an input–output 
equation is to frequently differentiate the outputs so that 
they are explicitly related to inputs. After differentiating 
(36), the following equations will be obtained. 

( ) ( ) ( )2

h b h f h aL L L L L= + + C C η C η C η v  (37) 

where Lie algebra is utilized in the above equation. 
Now, the input va can be chosen as  

( )( ) ( ) ( )
1

2

a f h h b hL L L L L
−

 = − − v C η ξ C η C η  (38) 

The above non-linear feedback, linearizes and 
decouples the system in the following form. 



International Journal of Robotics, Vol. 9, No. 1, (2020), B Tarvirdeizadeh et al., 64-74 

 

 

=C ξ  (39) 

where ξ  represents the virtual input vector. It can be 

chosen as 

1 2des= + +ξ C K e K e  (40) 

where 
1K  and 

2K are appropriate control gain 

matrices. 

It is worth mentioning that the developed controller 
(38) is model-based and depends on the robot 
parameters. In the real world applications, the exact 
values of the parameters mtr, mtr, r, w and l, are available 
while the values of parameters related to position of the 
center of mass, moment of inertia and actuators’ 
constants, such as ctc, Itc, Itr, γ1 and γ2, contain 
uncertainties. Therefore, the exact values of the 
mentioned parameters will be identified in this study. To 
this end, the following parameters are considered as 
unknown values. 

2

1 2/
T

tr tc tc tcI l I c m  =  θ  (41) 

Applying this notation, Eq. (30) can be rewritten as 
follows. 

( )
2

2 0 1

3

tan ( ) 0

0

sM   



 + −
=  
 

M μ  

( )
11 12

2

12 4 2

,
2

c c

w
c

r


− 
 =
 
  

C μ μ  

( ) ( ) ( )0 1 0 1

1 1
1

cos cos
r

w w

   

 
 − −=
 
 − 

B μ  

(42) 

where 
( )

0
12 5

0 1cos
c




 
=

−
and 

( )

( )

( )

( )

( )

0 1 0 1

11 2 1 2 03 3

0 1 0 1

4

2 2

0 1

sin sin

cos cos

1
2 .

cos

c

r

   
   

   



 

− −
= − +

− −

+
−

 

Now, the appropriate zi variables are defined as, 

2

1 0 1tan ( )z  = − , 
( )

( )
0 1

2 1 3

0 1

sin

cos
z

 


 

−
=

−
, 

( )

( )
0 1

3 0 3

0 1

sin

cos
z

 


 

−
=

−
, 

( )
4 2 2

0 1

2 1

cos
z

r  
=

−
, 

( )
0

5

0 1cos
z



 
=

−
 and 

( )
6

0 1

1

cos
z

 
=

−
. 

Substituting above equations into (28) and applying 
additional mathematical manipulation and some 
simplifications will resulted to the following equations. 

2 2 4 4 5 5 1 1 1

3 3 5 7 4 6 1 8 0

s sZ Z Z Z M u y

Z Z Z Z

   

   

+ − − = − =


+ + − =
 (43) 

where Zi are appropriate regressors, and θi are unknown 
parameters that should be identified online during 
system control. In order to identify these parameters, the 
Recursive least squares (RLS) estimation method are 
implemented [14]. In this method, the following 
equations is utilized to estimate the unknown parameters 
vector θ. 

 

ˆ ˆ( 1) ( )

( ) ( 1)
( 1)

1 ( 1) ( ) ( 1)

( 1) ( )

( ) ( 1) ( 1) ( )

1 ( 1) ( ) ( 1)

T

T

T

m m

m m
m

m m m

m m

m m m m

m m m



 + = +


 + +
 + +   +


+ = −

   + +  

+ +   +

θ θ

P Z

Z P Z

P P

P Z Z P

Z P Z

 (44) 

wehre ( 1) ( 1) ( 1) ( )T

sm y m m m + = + − + Z θ , m 

is the preceding time index, P is the covariance matrix, 

Z is the regressors vector and θ̂ is the estimated 

unknown parameters vector. It should be noted that, all 
states of the system are available in real time from 
measurement. 

It should be noted that because of identification 
process of some of the system parameters, the Eq. (38) 
should be utilized as follows in the control loop. 

( )( ) ( ) ( )
1

2

ˆ ˆa h h hf b
L L L L L

−

 = − − v C η ξ C η C η  (45) 

The above control input is the final control 
command to force the system to track the desired 
trajectory. Fig. 2 shows the feedback linearizing control 
system for the trajectory tracking considering 
identification of the unknown parameters in the system. 
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,C C,ref refC C Control
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η

 

Fig. 2: The control schematic of the TTWR system 

SIMULATION RESULTS 

In this part, the simulation results of the implemented 
controller will be analyzed. The physical parameters of 
the system are reported in TABLE I. 

TABLE I.  THE PHYSICAL PARAMETERS OF THE SYSTEM 

Param⃰ Value Unit Param⃰ Value Unit 

mtc,mtr 0.9,0.33 kg ctc,ctr 0.29,0 m 

Itc,Itr 0.0035, 
0.00078 

kg.m
2 

γ1, γ2 0.2615, 
0.2668 

N.m/V, 
N.msΩ2/rad 

l 0.17 m w 0.0595 m 

r 0.026 m K1,K2 diag(1,1),  
diag(2,2) 

-- 

⃰ : “Param” stands for “Parameter” 

 

The desired reference trajectory is considered as a 
circular path as follows. 

2

2

1.7cos(0.001 0.1)

1.7sin(0.001 0.1)

des

des

x t

y t

   +
=   

+   
 (46) 

Notice that based on the above selection for the 
trajectories of point Ntr, the desired outputs are required 
to be calculated according to (36). In the next 
simulations the look-ahead distance D=0.17. 

The initial condition of the robot is considered as μ =[-

1.8597 m,0.1941 m,-0.1 rad, 0.5 rad] as an arbitrary 
point in XY plane. Fig. 3 shows the trajectory tracking 
performance of the trailer robot. Fig. 4 and Fig. 5 show 
the x and y components of the reference trajectory 
tracking errors, respectively. It is obvious that the 
desired trajectory was tracked accurately by the 
developed controller. Fig. 6 and Fig. 7 demonstrate the 
first and the second actuators’ output, respectively. 
Considering Eq. (41), Fig. 8 to Fig. 12 show the 
parameters identification process by the adaptation 
algorithm. It is emphasized that in the simulations, the 
exact value of these parameters are assumed as 

 
T

0.2615,0.90,0.0792,.2668,0.2610=θ  . The initial 

guess of the θ in adaptation algorithm is considered as 

( )  
T

8,10,0.5,0.4, 4ˆ 0 0.=θ . 

As can be observed in Fig. 8 to Fig. 12, the considered 
identification law has estimated all parameters rapidly in 
less than 1 sec. The final values of the estimated 
parameters by the developed identification method are 

as  
T

0.2626,  0.9062,  0.0802,  0.2679,  0.2621ˆ
identified

=θ  . 

Comparison.of ˆ
identified
θ  with the exact values of theses 

parameters, 

 
T

0.2615,  0.90,  0.0792,  0.2668,  0.2610=θ , starting 

from ( )  
T

0 8,10,0.5,0.4ˆ ,0.4=θ prove the appropriate 

performance of the employed identification approach. 

 

Fig. 3: The path tracked by the robot trailer 

 

 

Fig. 4: The x component of the reference trajectory tracking error 

 



International Journal of Robotics, Vol. 9, No. 1, (2020), B Tarvirdeizadeh et al., 64-74 

 

 

 

Fig. 5: The y component of the reference trajectory tracking error 

 

In order to simulate the real world condition for the 

TTWR system, the disturbance attenuation 

performance of the system is analyzed in the simulation 

tests. To this end, 50% of the control input was added 

to the system original input to test the disturbance 

attenuation performance of the developed controller. 

Figure 13 and Figure 14 show x and y components of 

the reference trajectory tracking errors considering 

disturbed input, respectively. Two sets of other 

simulations considering step-shape and sin-shape 

disturbances were conducted in the implemented tests. 

Figure 15 and Figure 16 show x and y components of 

the reference trajectory tracking errors considering 

step-shape disturbed input, respectively. The amplitude 

of this disturbance was 1 mV. Figure 17 and Figure 18 

show x and y components of the reference trajectory 

tracking errors considering sine-shape disturbed input, 

respectively. The amplitude of this disturbance was 0.5 

mV. Moreover, 10% of uncertainty in the masses of the 

first and the second platforms was added to the system. 

Figure 19 and Figure 20 show x and y components of 

the reference trajectory tracking errors considering this 

type of uncertainty. 
 

 

Fig. 6: The time history of the first actuator output 

 

 

Fig. 7: The time history of the second actuator output 

 

 

Fig. 8: The θ1 convergence time history  

 

 

Fig. 9: The θ2 convergence time history 

 

 

Fig. 10: The θ3 convergence time history 
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Fig. 11: The θ4 convergence time history 

 

 

Fig. 12: The θ5 convergence time history 

 

 

Fig. 13: The x component of the reference trajectory tracking error 
considering disturbed input  

 

 

Fig. 14: The y component of the reference trajectory tracking error 
considering disturbed input 

 
 

 

Figure 15. The y component of the reference trajectory tracking error 
considering disturbed input 

 

 

Figure 16. The x component of the reference trajectory tracking error 
considering step-shape disturbed input 

 

 

Figure 17. The x component of the reference trajectory tracking error 
considering step-shape disturbed input 

 

 

Figure 18. The x component of the reference trajectory tracking error 
considering sin-shape disturbed input 
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Figure 19. The y component of the reference trajectory tracking error 
considering sin-shape disturbed input 

 

 

Figure 20. The x component of the reference trajectory tracking error 
considering uncertainy 

 

 

Figure 21. The y component of the reference trajectory tracking 

error considering uncertainy  

5. Conclusions 

In the present research, for the first time an adaptive 
partial feedback linearization approach was presented to 
trajectory tracking control of TTWRs. To this end, first 
an integrated model of the system kinematics, dynamics 
and actuator model was derived. Then, considering 
appropriate outputs using look-ahead method, the input-
output feedback linearizing technique was employed. 
Since the exact value of some robot parameters may not 
be available in the controller, using RLS identification 
procedure, they were obtained. The obtained computer 
simulation results revealed the performance of the 
developed controller in terms of its accuracy and 
disturbance attenuation capability. 

 

References 

[1] K. Alipour and S. A. A. Moosavian, "Dynamically stable 
motion planning of wheeled robots for heavy object 
manipulation," Advanced Robotics, vol. 29, no. 8, pp. 545-560, 
2015. 

[2] K. Alipour, P. Daemi, A. Hassanpour, and B. Tarvirdizadeh, 
“On the capability of wheeled mobile robots for heavy object 
manipulation considering dynamic stability constraints,” 
Multibody System Dynamics, vol. 41, no. 2, pp. 101-123, 2017. 

[3] A. Mohamed, J. Ren, H. Lang, and M. El-Gindy, “Optimal path 
planning for an autonomous articulated vehicle with two 
trailers,” International Journal of Automation and Control, vol. 
12, no. 3, pp. 449-465, 2018. 

[4] J. Yuan, S. Yang and J. Cai, “ Consistent Path Planning for On-
Axle-Hitching Multi-Steering Trailer Systems,” IEEE 
Transactions on Industrial Electronics, 2018. 

[5] K. Hou, Y. Zhang, J. Shi, and Y. Zheng, “Motion Planning 
Based on Artificial Potential Field for Unmanned Tractor in 
Farmland,” International Conference on Applied Human 
Factors and Ergonomics, pp. 153-162, Springer, Cham, 2018. 

[6] B. Siciliano and O. Khatib, (Eds.), Springer handbook of 
robotics, 2nd ed., Springer, 2016. 

[7] A. B. Robat, K. Alipour, B. Tarvirdizadeh, and N. M. Aftah, 
“Trajectory tracking of a tractor-trailer robot using model 
predictive control,” Modares Mechanical Engineering, vol. 17, 
no. 11, pp. 210-218, 2018. 

[8] A. K. Khalaji, and S. A. A. Moosavian, “Robust adaptive 
controller for a tractor–trailer mobile robot,” IEEE/ASME 
Transactions on Mechatronics, vol. 19, no. 3, pp. 943-953, 
2014. 

[9] A. K. Khalaji, and S. A. A. Moosavian,  “Modified transpose 
Jacobian control of a tractor-trailer wheeled robot,” Journal of 
Mechanical Science and Technology, vol. 29, no. 9, pp. 3961-
3969, 2015. 

[10] A. Khanpoor, A. K. Khalaji, and S. A. A. Moosavian, 
“Modeling and control of an underactuated tractor–trailer 
wheeled mobile robot,” Robotica, vol. 35, no. 12, pp. 2297-
2318, 2017. 

[11] Y. Yu Lwin, and Y. Yamamoto. "Obstacle-responsive 
navigation scheme of a wheeled mobile robot based on look-
ahead control." Industrial Robot: An International Journal, 
vol. 39, no. 3, pp.  282-293, 2012. 

[12] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, “Robotics: 
modelling, planning and control,” Springer Science & Business 
Media, 2010. 

[13] J. J. Craig, “Introduction to robotics: mechanics and control,” 
3rd ed., Upper Saddle River, NJ, USA:: Pearson/Prentice Hall, 
2005. 

[14] S. Haykin “Adaptive Filtering Theory,” Prentice Hall, 2013. 

 



International Journal of Robotics, Vol. 9, No. 1, (2020), B Tarvirdeizadeh et al., 64-74 

 

 

Biography 

Bahram Tarvirdeizadeh received his 

BSc., from K. N. Toosi University of 

Technology, and MSc. and Ph.D. 

degrees from University of Tehran. 

He is currently an associate professor 

at University of Tehran. He teaches 

courses in the areas of mechatronics, 

robotics, dynamics and industrial 

automation.  His main research interests include 

mechatronics, rehabilitation, medical mechatronics, 

robotics, dynamic and control. 

 

 

Khalil Alipour received his B.S., M.S. 

and PhD degrees all with honors in 

Mechanical Engineering from K. N. 

Toosi University of Technology in 2002, 2004 and 

2010, respectively. He is currently an associate 

professor at University of Tehran. He teaches courses 

in the areas of robotics, dynamics, automatic control, 

analysis and synthesis of mechanisms. His research 

interests are in the areas of modeling and simulation, 

automatic control, motion/path planning of robotic 

systems and tip-over stability analysis of mobile robots. 

He has published various articles in international 

journals and conference proceedings. 

 

Sotirios Spanogianopoulos, Kent 
University, School of Engineering and 
Digital Arts,University of Kent, 
England. 
The biography of this author is not 
available at this time 

  

 


