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Various structures for the spherical parallel robots have been proposed. 

The 3-RRR Spherical parallel robot and its specific structures like Agile 

Eye/Wrist is one of the most famous spherical parallel robots. In this 

article, a new approach is proposed for modeling the direct kinematic 

problem of this robot to obtain all assembly modes. Utilizing the spherical 

geometry of the robot, two coupled trigonometric equations are obtained 

using the angle-axis representation. Next, the two coupled equations are 

solved using Sylvester’s elimination method which leads to a polynomial 

of eight degrees. Finally, two examples are provided which have eight real 

solutions (assembly modes) and confirming the assembly modes is 

performed by a commercial modeling software package. The eight real 

solutions can be concluded that the degree of the obtained polynomial is 

the minimum and the proposed modeling is optimal. The presented 

algorithm is very valuable for direct kinematic analysis of the spherical 

parallel manipulators due to its straightforward implementation and 

simplicity. The step-by-step and conceptual approach of the presented 

method is also applicable to various parallel structures. 
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1. Introduction  

Many industrial applications require orientating 

a rigid body around a fixed point such as; orienting 

a tool or a workpiece in machine tools, solar 

panels, space antenna and telescopic mechanisms, 

flight simulator mechanism and camera devices. A 

spherical manipulator is one in which the end-

effector is moved on the surface of a sphere. In 

other words, the end-effector can rotate around any 

axis passing through a fixed point, the center of the 

sphere. Therefore a spherical manipulator can be 

used as a device to orient the end-effector[1-11]. 

Applications of such robots can include 

mechanisms for determining the direction of 

machine tools or workpieces, solar panels, space 

aerials and telescopic mechanisms, simulation of 

three degrees of freedom systems, functional test 

of an autopilot of a rocket, rehabilitation robot for 

the wrist, ankle and shoulder. Generally, rigid 

body orientation without any changes in its 

position is required in many technical applications. 

Various structures for spherical parallel robots 

have been proposed. Alici and B. Shirinzadeh [13] 

proposed a spherical parallel robot with structure 

3SPS-S. The branches of this robot are the same 

and each branch is composed of SPS joints. In 

each branch, a spherical joint is attached to the 

fixed base and another spherical joint is connected 

to the moving platform. These spherical joints are 

non-actuating. The moving plate is also connected 

directly to the fixed plate by a non-actuating 

spherical joint. In this robot, prismatic joints of 

each branch are considered as actuator joints. 

C. Innocenti and V. Parenti-Castelli [13], J. 

Enferadi[14], K. Wohlhart[15] and R. Vertechy 

and V. Parenti-Castelli [16] studied the spherical 

parallel robot with structure 3UPS–S. The 

branches of this robot are the same and each 

branch is composed of UPS joints. In each branch, 

the universal joint is attached to the fixed base and 

the spherical joint is connected to the moving 

platform. These joints are non-actuating. The 

moving platform is directly connected to the fixed 

platform through a passive spherical joint. Also, 

the prismatic joints in each kinematic chain are 

regarded as active joints. 

R. Di Gregorio [17] proposed a new spherical 

parallel robot with a 3-RRS structure. The robot 

consists of identical branches, with each branch 

comprising RRS joints. In each branch, a revolute 

joint is attached to the fixed base and a spherical 

joint is connected to the moving platform. All the 

revolute joints of this robot are on a hypothetical 

sphere. The rotational axes of all the revolute 

joints pass from the center of the sphere. In this 

robot, the revolute joints that are connected to the 

base are considered as actuator joints. M. Karouia 

and J.M. Herve [18] proposed an asymmetrical 

parallel robot. The connection arrangement of each 

branch of this robot is different from its other 

branches. In the first branch, there are three 

revolute joints in which their axes pass from one 

point. In the second branch, there are three 

prismatic joints and a spherical joint. The axes of 

the two prismatic joints are perpendicular to each 

other and each one moves along one of the axes of 

the Cartesian system. The third branch consists of 

two revolute joints, a prismatic joint and a 

spherical joint. In this branch, the rotation axes of 

the two revolute joints pass from one point. 

The most famous spherical parallel robot was 

first studied by C.M. Gosselin [19, 20]. This 

spherical parallel robot has a 3-RRR structure. The 

branches of this robot are the same and each 

branch has RRR connections. All the revolute 

joints of this robot are placed on a hypothetical 

sphere. The rotational axes of all joints pass from 

the center of a sphere. In each branch, the revolute 

joint that is acts as actuator is attached to the fixed 

base and the remaining joints are non-actuating. 

Unlike spherical serial robots, the direct 

kinematic problem in parallel robots is complex 

and difficult and an identical method for solving 

the direct kinematic problem cannot be presented. 

For this reason, the use of innovative methods 

which reduce the degree of equations and simplify 

its coefficients is of great importance. Therefore, 

the direct kinematic problem of these types of 

robots has always been of interest to various 

researchers. One can mention solving the direct 

kinematic problem of spherical parallel robots by 

L. Temei [21], R. Vertechy [16], H. R. Daniali 

[22], C.M. Gosselin [19], J. Enferadi, A. 

A.Tootoonchi [23, 24], J. Enferadi and A. Shahi 

[25].  

For the first time, the solution to the direct 

kinematic problem of a spherical parallel robot, 3-

RRR, was performed by Gosselin [19]. 

Subsequently, other methods have been proposed 

to solve the direct kinematic problem of the robot 

[26, 28]. Also, for the first time, a specific 

recombination of the 3-RRR spherical parallel 

robot, called Agile Eye, was suggested in [29]. 

Thereafter, various investigations into the Agile 

Eye/Wrist mechanism were also carried out by 

other researchers and solving the direct kinematic 

problem was also considered [30]. 

In this paper, at first, the 3-RRR spherical robot 

and the geometric parameters of the robot are 

introduced. Next, the presented methods by other 

researchers to solve the direct kinematic problem 

of the robot are evaluated. After introducing the 

Angle-Axis representation approach, step-by-step, 

the modeling of the direct kinematic problem of 

the 3-RRR spherical parallel robot will be 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Javad%20Enferadi&eventCode=SE-AU
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considered. The use of a moving local coordinate 

system attached to the middle link of the first 

branch of the robot is one of the essential steps in 

the modeling process. Ultimately, this modeling 

leads to the formation of two trigonometric 

equations, which are converted into an eight-

degree polynomial equation using Sylvester's 

elimination method. Finally, to validate the 

obtained equations, two case studies are presented 

for direct kinematics analysis of the robot. 

2. Introducing the 3-RRR spherical parallel 

robot 

According to Fig. 1, the robot consists of a 

spherical triangle as a fixed base, P, a moving 

spherical triangle as the end-effecter, M, and three 

branches. Each kinematic branch of this robot 

includes Revolute- Revolute- Revolute joints. For 

pure rotation of moving spherical triangle around a 

fixed point, all axes of the joints must pass through 

one point, which is the center of the sphere. 

Without loss of generality, the radius of the 

spheres that include fixed base, end-effecter, 

actuators and middle links can be considered equal 

to one. The dimensions of the fixed base spherical 

triangle are characterized by central angles   , 

(         ,           and          ). 

The unit vector    that shows the direction of the 

axis of the actuator joint is defined in the direction 

of    . The unit vector    that shows the rotational 

direction of the middle links is defined in the 

direction of    . The length of the      actuator 

link is defined with the central angle    that can be 

expressed as   
         . The direction of 

revolute joints connected to spherical triangle is 

also shown with the vector   . The length of the 

    , non-actuator link, is alos shown with the 

central angle    that can be expressed as   
    

     . The dimensions of the moving spherical 

triangle,        , are also determined by the 

central angles   , (         ,           

and          ). 

 

Figure 1. CAD model of a common 3-RRR spherical 

parallel robot 

 

3. Problem statement 

The main goal of solving the direct kinematics 

problem of a 3-RRR spherical robot is to obtain 

the orientation of the moving spherical triangle of 

the robot or the direction of the unit vectors   . 

The recent methods that have been used to solve 

the direct kinematics of this class of robots can be 

categorized as follows, 

a) Using three unit vectors              as 

unknown: 

In this method, the direct kinematic problem has 

nine unknowns which are components of three unit 

vectors in the fixed coordinate system. Therefore, 

nine equations are formed as follows 

  
                                (1) 

  
                                  (2) 

  
                            (3) 

According to the above equations, equation (1) 

consists of three linear equations and equations (2) 

and (3) contains six equations of degree 2. 

Converting these equations using an eliminating 

method (for instance Sylvester’s or Bezout’s 

method) into a polynomial with one unknown 

parameter leads to a polynomial of degree 64 

which is really difficult to solve. Moreover, 

solving such equations will lead to complex 

answers. In [26], the direct kinematic equations of 

the robot have been solved using this method. To 

solve the system of equations created by relations 

(1) to (3), the “fsolve” command of the MATLAB 

software and the initial prediction of the answers 

are used. 

b) Using Euler’s angles of the moving spherical 

triangle as unknowns 

In this method, a local coordinate system 

attaches to the moving spherical triangle. The unit 

vectors    are determined in local coordinate 

system and can be written in fixed coordinate 

system {B} using three Euler’s angles as follows, 

     
   

                    (4) 

Where   
  is the components of the    vectors 

in the local coordinate system {M} and   
  is the 

rotation matrix of the local coordinate system {M} 

relative to the fixed coordinate system {B}. By 

substituting    in equation (1), three trigonometric 

equations are obtained in terms of the three 

unknown Euler’s angles. These three trigonometric 

equations can be converted to a polynomial 

equation of degree 16. However, as suggested in 
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[19], local and fixed coordinate system can be 

considered in such a way that one of Euler’s angles 

is equal to the central angle of the middle link. In 

this case, the matrix    
 can be written only in 

terms of two unknown angles. Using this method, 

the final polynomial degree can be reduced from 

16 to 8. 

c) An approach based on input/output (I/O) 

equations of spherical four-bar mechanism 

In this method, the 3-RRR spherical parallel 

robot is divided into two spherical four-bar 

mechanisms while the output of one of these 

mechanisms is considered as the input of another 

mechanism [27]. The obtained equations are based 

on two unknown angles that can be determined by 

the orientation of the moving spherical triangle. In 

the paper, the values of these two unknown angles 

are obtained as semi-graphic. However, the paper 

mentioned a number of mistakes in the formulation 

of formulas as well as in numerical examples 

which were then corrected by the authors 

themselves [31]. 

In this paper, the problem of direct kinematics 

of the 3-RRR spherical robot will be invetigated 

and a new method for the general structure of this 

spherical robot will be presented. The main feature 

of the proposed method is its simplicity and the 

use of the angle-axis representation which will be 

explained in the following sections step-by-step. 

4. Angle-axis representation 

Before the kinematic analysis, the rotation 

matrix proposed by Rodriguez [32] is introduced. 

Rodriguez showed that a rotation matrix can be 

defined as follows, 

                         (5) 

Where   is the unit vector representing the axis 

of the rotation and the angle   represents the 

amount of this rotation around the unit vector  . 

Also, the matrix   is an anti-symmetric matrix 

which is defined using the vector   as follows, 

  [

      
      
      

] 

(6) 

Where   ,    and    are the components of the 

unit vector   in the Cartesian coordinate system. 

Now, consider the vector   which is transferred by 

the matrix       . The newly transferred vector    

can be written as follows, 

                            (7) 

The above equation can be written as follows, 

                             (8) 

Where   stands for external multiplication, we 

also know that, 

                               (9) 

Therefore, 

                              (10) 

Finally, it can be written, 

                          (11) 

Therefore, the linear operator of the rotation 

matrix can be written as follows, 

                             (12) 

The above equation is a special form of the 

Rodriguez formula that is equivalent to the angle-

axis representation [33]. 

5. Direct kinematic solution of the spherical 

parallel robot 3-RRR 

In solving the direct kinematic problem of a 3-

RRR spherical parallel robot, the goal is obtaining 

the unit vectors   in the fixed-coordinate system 

{B} with the known variables of the inputs (  ) 

and the constant values of   ,   ,    and   . For 

this purpose, the new approach to solve the direct 

kinematic problem of the robot is described step-

by-step as follows. 

Step 1: Introducing the fixed coordinate system 

In the first step, the fixed coordinate system 

{B} is defined according to the unit vectors    and 

   (See fig. 2). Without loss of generality, we 

consider    axis in the direction of the unit 

vector   . Therefore, the unit vector     in the 

fixed coordinate system is defined as, 

      [   ]  (13) 

Axis    of the coordinate system {B} is 

perpendicular to plane        using the unit 

vectors     and    as, 

   
     

‖     ‖
 

(14) 

The    axis of the fixed coordinate system {B} 

is also defined using the right-hand rule as, 

   
     

‖     ‖
     

(15) 
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Figure 2. The unit vectors and the first branch of a 3-

RRR spherical parallel robot  

Step 2: Obtaining the unit vectors    in terms of 

rotation angles of motor 

Consider the initial position of the  th
 link as the 

     arc is on the plane         and point    is on 

arc      (along    to     ). To obtain the unit 

vector   , first, the vectors    and    are defined as, 

   
       

‖       ‖
 

(16) 

   
     

‖     ‖
 

(17) 

According to figure 2, by rotating the unit 

vector    about the unit vector    in the positive 

direction as far as the angle of rotation of the 

motor   , the unit vector    is obtained as, 

                                
   

           (18) 

Since the unit vectors    and    are 

perpendicular to each other, the above equation 

will be simplified as, 

                   [         ]  (19) 

Now, by rotating the unit vector    about the 

unit vector    in the positive direction as much as 

  , the unit vector    is obtained as, 

                                
   

           (20) 

Since the vectors    and    are perpendicular to 

each other, the above equation will be simplified 

as, 

                  [         ]  (21) 

 

Step 3: Defining the moving coordinate system 

{ } 

In this step, the moving coordinate system {A}, 

which is connected to plane      , is defined. 

The axis    of this coordinate system is considered 

to be along the unit vector    as, 

      (22) 

The axis    of the moving coordinate system 
{ } is considered to be perpendicular to 

plane       and is defined as, 

      
     

‖     ‖
 

(23) 

The axis    of the coordinate system {A} is 

also defined using the right-hand rule as, 

          (24) 

Step 4: Defining the unit vectors   ,    and    in 

moving coordinate system { } 

According to Fig.2, we can easily show the 

vectors    ,    and    in the moving coordinate 

system {A} as, 

     
  [       ]  (25) 

     
  [       ]  (26) 

  
  [          ]

  (27) 

Step 5: Obtaining the unit vector    in coordinate 

system { } 

Now, by rotating the unit vector    about the 

unit vector    in the positive direction as much 

as  , the unit vector    is obtained as, 

                 

           
   

         
(28) 

Since the vectors    and    are perpendicular 

to each other, the above equation will be simplified 

as, 

                (29) 

Substituting the unit vectors     and    from 

(27) and (26) in the above equation, the unit vector 

   can be written in terms of   in the moving 

coordinate system { } as, 

  
  [             ]  (30) 

Step 6: Obtaining unit vector    in coordinate 

system { } 

According to Fig.2, we can easily obtain the 

unit vector    by rotating the unit vector     about 

the unit vector    as much as   . Therefore, it can 

be written using the angle-axis representation 

formula as, 
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(31) 

Where   is the angle between the two planes 

      and      . Since the unit vectors    

and    are perpendicular to each other, the above 

equation will be simplified as, 

                   (32) 

Substituting the unit vectors     and    from 

(30) and (27) in the above equation, the unit vector 

   can be written in terms of   in the moving 

coordinate system { } as, 

    [

                  
                 

           
] 

(33) 

Where    is obtained using the spherical 

geometry according to Appendix A. 

Step 7: Obtaining the unit vector    in the 

moving coordinate system { } 

According to Fig.2, the unit vector    can be 

easily obtained by rotating the unit vector    

about the unit vector    as much as   . Therefore, 

it can be written using the angle-axis 

representation as, 

                    
            

         
    

(34) 

Since the unit vectors    and    are 

perpendicular to each other, the above equation 

will be simplified as, 

                   (35) 

The above equation can be rewritten in the 

moving coordinate system {A} as, 

        
        

    
 

  (36) 

As   
 is in terms of unknown angle  , 

therefore,   
  in the moving coordinate system 

{A} is also obtained in terms of the unknown 

parameter  . Substituting   
  and   

  from (30) 

and (27) in the above equation, it will be 

simplified as, 

  
  [

               
               

     
] 

(37) 

Step 8: Obtaining the unit vector    in the moving 

coordinate system { } 

According to Fig.2, the unit vector    can be 

easily obtained by rotating the unit vector    

about the unit vector     as much as   . 

Therefore, 

              

       
            

   

           

(38) 

Since the unit vectors    and    are 

perpendicular to each other, the above equation 

will be simplified as, 

                    (39) 

The above equation can be rewritten in the 

moving coordinate system {A} as, 

        
         

    
 

  (40) 

Since   
  is in terms of unknown angle  , 

therefore,   
  in the moving coordinate system 

{A} is also obtained in terms of the unknown 

parameter  . Substituting   
  and   

  from (33) 

and (27) in the above equation, it will be 

simplified as, 

  
 

 [

                              
                              

                 
] 

(41) 

Step 9: Obtaining the rotation matrix   
  in terms 

of unknown angle   

As the values of the unit vectors    and    are 

known in the fixed coordinate system {B} and 

since the unit vector    and plane       are 

perpendicular to each other, the unit vector    can 

be easily obtained by rotating the unit vector    

about the unit vector    as much as  . Therefore, 

we can write, 

                            
   

         (42) 

Since the unit vectors    and    are 

perpendicular to each other, the above equation 

will be simplified as, 

                (43) 

On the other hand, by replacing    from 

equation (12) and    [   ]  in equation 

(19), the unit vector     is given in terms of the 

rotational angle of the first motor    as, 

                   [        ]
  (44) 

Substituting the unit vectors     and    from 

(12) and (44) in equation (21), the unit vector    

can be written in terms of the known parameter    

as, 
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 [               ]
  (45) 

Now, substituting the unit vectors     and    

from (44) and (45) in equation (43), the unit vector 

   can be obtained in terms of unknown 

parameter   in the fixed coordinate system { } as, 

   [

     
               
              

] 
(46) 

Therefore, the unit vector    obtains in terms 

of   . On the other hand, it can be written 

according to equations (22), (23) and (24) as, 

  
  [                  ] (47) 

Therefore,   
  will also be written in terms of 

the unknown parameter  , 

  
 

 [

              
                                   
                                  

] 

(48) 

Step 10: Obtaining the unit vectors    and    in 

the fixed coordinate system { } 

Since the unit vectors    and    are specified on 

the fixed coordinate system {B}, therefore, their 

description on {A} can be done using    
  as, 

  
    

   
       

  (   
 
 )   

  (49) 

  
    

   
       

  (   
 
 )   

  (50) 

As   
  is in terms of unknown angle  , 

therefore,   
  and   

  are also obtained in terms 

of the unknown parameter  . 

Step 11: creating two trigonometric equations in 

terms of   and   parameters 

In this step, based on the value of the central 

angle of middle link    , and obtained unit vectors 

  
 ,   

  and   
 ,   

  in terms of unknown 

angle   and  , respectively, two trigonometric 

equations can be written as, 

  
                       

 
   

      (51) 

  
                       

 
   

      (52) 

Substituting equations (37), (43), (49) and (50), 

in the above equations, two trigonometric 

equations are obtained in terms of unknown 

angle   and   as, 

                   (53) 

                   (54) 

where, 

                       (55) 

In which the coefficients    ,     and     are 

given in Appendix B. 

Step 12: Convert two trigonometric equations to 

two polynomial equations 

For converting the two trigonometric equations 

(53) and (54) to two polynomial equations, the 

following replacement must be done in equations 

(53) and (54). 

     
  

    
           

    

    
         

 
  

               
    

     
(56) 

where, 

        ⁄                  ⁄   (57) 

Therefore, equations (53) and (54) can be 

represented as, 

   
           (58) 

   
           (59) 

where, 

       
           (60) 

Step 13: Converting the two nonlinear polynomial 

equations to one polynomial 

In this step, using the Sylvester’s elimination 

method, the variable   is eliminated from equations 

(58) and (59). For this purpose, we multiply the 

Eq. (59) in    and Eq. (58) in    and subtract one 

from each other. We also multiply the Eq. (59) in 

   and Eq. (58) in    and subtract from each other. 

Then two recent equations can be written in the 

following matrix, 

[
                  

                  
] [

 
 
]  [

 
 
] (61) 

The above equation shows a linear equation 

system in terms of   and 1. Therefore, the 

determinants of the matrix of coefficients must be 

zero. Therefore, the final polynomials will be 

obtained from the following equation, 

                      
            

    (62) 

This polynomial is based on the parameter   

and is of order eight, which is written in the 

following general form. 

∑   
   

 

   

 

(63) 
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in which its coefficients are based on the fixed 

geometric parameters of the robot and variable 

parameters of the robot motors. 

Step 14: Obtaining the two angles  ,   and the 

unit vectors    

By solving Eq. (63), we can obtain the value of 

its corresponding angle   using the values 

obtained for the parameter  as, 

                  (64) 

By specifying the values of  , we can calculate 

the vectors   
  according to the previous 

equations. Also, by inserting the value of   in 

equation (53) and (54), we can easily obtain the 

values      and      and compute the value of 

the angle   as, 

                    (65) 

By calculating  , we can also compute the 

rotation matrix   
  using Eq. (48). Finally, the unit 

vectors    is obtained in the fixed coordinate 

system {B} and solving the direct kinematic 

problem of the robot will accomplish as follows, 

     
   

  (66) 

6. Case study 

In this section, by representing two examples, 

the solutions of the direct kinematic problem of a 

3-RRR spherical parallel robot are obtained and it 

is shown that the proposed method is an optimal 

method for solving the direct kinematic problem of 

the robot. In direct kinematics problem, the 

constant values of   ,   ,    and    represent the 

geometry of the fixed spherical triangles, the 

actuated links, the middle links, and the moving 

spherical triangles, respectively. Also, the variable 

parameters of the actuators    are known as inputs. 

To determine the orientation of the moving 

spherical triangle as previously mentioned, two 

angles   and   must be obtained. In the following 

examples, details of the calculation will be 

described. 

6.1. Case study 1 

Consider the angles of the fixed spherical 

triangle are equal to               . 
Therefore, the unit vectors    in the fixed 

coordinate system {B} will be as, 

   [   ]  
   [                           ]  

   [                                ]  
Using the above vectors, the unit vectors    are 

also calculated in the fixed coordinate system {B} 

as, 

   [   ]  
  
 [                                  ]  

   [                         ]  
Consider value of the motor rotation as          
    and using the derived vectors obtained above, we 

can calculate the vectors    as, 

   [                          ]  
  
 [                               ]  
  
 [                               ]  

 

Next, consider the length of the actuated links as 

            . The unit vectors    are obtained 

as, 

  

 [                               ]  
  

 [                                ]  
  

 [                               ]  
Also, consider the values              

for the moving spherical triangle and using 

spherical geometry in accordance with Appendix 

A, the angle           will be obtained. Finally, 

substituting the values               for 

the middle links and using the above obtained 

parameters, we can calculate the coefficients of the 

polynomial of Eq. (63) as presented shown in 

Table 1. Therefore, we can obtain the values of the 

angles   and   from relations (64) and (65) easily 

as shown in Table 2. Finally, according to step 14, 

we can obtain the unit vectors    as shown in 

Table 3. The assembly modes related to these eight 

solutions are also shown in Figures 3 through 10. 

Since in this example, for the polynomials of 

degree eight of equation (63), eight real solutions 

were obtained, therefore, the polynomial degree 

obtained in equation (63) can be said to be 

minimal and optimal. 

Table 1. The obtained coefficients    (p=0-8) for case 

study 1 

Coefficients Value Coefficients Value 

   0.3482    8.5128 

   0.2918    -8.8615 

   -9.8783    0.8485 

   -13.0312    0.0177 

   17.9584   

Table 2. Values of the angles   and   for case study 1 

Configuration No. 

(Assembly modes) 
    

1                      
2                     
3                     
4                     
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5                    
6                      
7                    

8                    

 

Table 3. The assembly modes    for case study 1 

Configuration No. 

(Assembly modes) 
         

1 [                   ]  [                   ]  [                    ]  

2 [                   ]  [                    ]  [                    ]  

3 [                    ]  [                  ]  [                   ]  

4 [                   ]  [                    ]  [                  ]  

5 [                    ]  [                  ]  [                  ]  

6 [                    ]  [                  ]  [                   ]  

7 [                   ]  [                     ]  [                    ]  

8 [                    ]  [                    ]  [                   ]  

 

 

Figure 3. Assembly mode No.1 of 

case study 1  

 

Figure 4. Assembly mode No.2 of 

case study 1 

 

Figure 5. Assembly mode No.3 of 

case study 1 

 

Figure 6. Assembly mode No.4 of 

case study 1 

 

Figure 7. Assembly mode No.5 of 

case study 1 

 

Figure 8. Assembly mode No.6 of 

case study 1 

 

Figure 9. Assembly mode No.7 of case study 1 
 

Figure 10. Assembly mode No.8 of case study 1 
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6.2. Case study 2 

In this example, a particular case of a 3-RRR 

spherical parallel robot is investigated. Consider 

the angles of the fixed triangle are equal to    
        . Thus, the unit vectors    in the 

fixed coordinate system {B} will be defined as, 

          [   ]  

Using the above unit vectors, the vectors    are 

also calculated on the fixed coordinate system {B} 

as, 

         [   ]  

Consider values of the motors rotation as 

                         and using the 

above obtained unit vectors, we can calculate the 

vectors    as follows, 

   [   ]  

   [                     ]  
   [                     ]  

Next, consider the length of the actuated links 

as                       . Therefore, 

the unit vectors    are obtained as, 

   [                        ]  

   [            
                        ]  

   [                                 ]  

Also, consider the values          
       for the moving spherical triangle and using 

spherical geometry according to appendix A, the 

angle            will be obtained. Finally, 

considering the values                  
        for the middle links and utilizing the 

previously obtained parameters, we can calculate 

the coefficients of the polynomial of Eq. (63) as 

presented in Table 4. Therefore, we can obtain the 

values of the angles   and   from equations (64) 

and (65) easily as shown in Table 5. Finally, 

according to step 14, we can obtain the unit vectors 

   as shown in Table 6. The assembly modes 

(configurations) related to these eight solutions are 

also shown in Figures 11 through 18. 

Table 4. The obtained coefficients    (p=0-8) for case 

study 2 

Coefficients Value Coefficients Value 

   0.2095    -21.2431 

   -1.1886    -5.8099 

   -9.2843    0.6965 

   16.4866    0.3481 

   16.8635   

Table 5. Values of the angles   and   for case study 2 

Configuration No. 

(Assembly modes) 
    

1                    
2                    
3                     
4                    
5                     
6                       
7                       
8                    

Table 6. The assembly modes    for case study 2 

Configuration No. 

(Assembly modes)          

1 [                  ]  [                   ]  [                     ]  

2 [                   ]  [                    ]  [                   ]  

3 [                   ]  [                    ]  [                   ]  

4 [                  ]  [                    ]  [                     ]  

5 [                   ]  [                   ]  [                   ]  

6 [                   ]  [                   ]  [                   ]  

7 [                        ]  [                   ]  [                    ]  

8 [                    ]  [                   ]  [                   ]  
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Figure 11. Assembly mode No.1 of 

case study 2 

Figure 12. Assembly mode No.2 of 

case study 2 
Figure 13. Assembly mode No.3 of 

case study 2 

 
 

 

Figure 14. Assembly mode No.4 of 

case study 2 
Figure 15. Assembly mode No.5 of 

case study 2 

Figure 16. Assembly mode No.6 of 

case study 2 

  

Figure 17. Assembly mode No.7 of case study 2 
 

Figure 18. Assembly mode No.8 of case study 2 

 

7. Conclusion 

In this paper, first, the 3RRR spherical parallel 

robot was first introduced and then different 

methods of solving the direct kinematics of this 

class of robots were evaluated. A new approach for 

modeling the direct kinematic problem of the robot 

and its solution was presented. In this new 

approach, the angle-axis representation is used to 

model the direct kinematic problem which has not 

been used in any of the previous methods. The 

advantage of the new method over the previous 

methods is the simplicity of problem modeling 

based on the structure of the robot which leads to 

the coefficients of the final equations (Appendix 

B). Using this approach, the direct kinematics 

problem of two sample robots was solved and 

eight different configurations were obtained for 

each one. The configurations were shown 

graphically by a commercial modeling software 

package which confirms the accuracy of the 
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proposed model. It can also be concluded that the 

obtained polynomial degree is minimal and the 

proposed modeling method is also optimal. The 

advantage of the proposed method was the use of 

two evident geometric angles in solving the direct 

kinematic problem of the robot. By using the 

presented analytical geometric method, the direct 

kinematic analysis of this class of robots, which 

are inherently very complex, has become 

understandable and conceptual. 

 

8. Appendices 

8.1. Appendix A: Calculating the angel    

   ∑  

 

   

 ⁄  

   (∏         

 

   

    ⁄ )

   

 

                     ⁄   

8.2. Appendix B: Coefficients    ,     and     

                                        

                              

                                

                        

                                                 

                                                   

      

                                                     

                                                        

                                                                                      

                                                                                       

                                

                                                                                         

                                                                                          

                                                     

                                                           

                                                           

                                                     

 

List of symbols 

   The joints of the middle links    
The unit vector perpendicular to the plane crossing 

the    and      vectors 

{ } Moving coordinate system    
The unit vector perpendicular to the plane crossing 

the    and    vectors 

{ } Fixed coordinate system    The axis direction of the active joints 

  An anti-symmetric matrix    The axis direction of the joints of the middle links 

   
The unit vector perpendicular to the plane 

crossing the    and    vectors 
   

The axis direction of the joints connected to the 

moving platform 

   
The joints connected to the moving 

platform 
{        } The unit vectors of the moving coordinate system 

M 
A spherical triangle as the moving 

platform 
{        } The unit vectors of the fixed coordinate system 

{ } Local coordinate system    The angle of the actuator links 

   
polynomial coefficients of the direct 

kinematic equation 
   The dimensions of the fixed base spherical triangle 

P A spherical triangle as the fixed base    Input joint angles 

   The active joints    
The dimensions of the moving platform spherical 

triangle 
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The rotation matrix of the local coordinate 

system relative to the fixed coordinate 
system 

   The angle of the middle links 
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