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This paper presents a real-time approach for detecting compensatory 

movements in upper limb rehabilitation for stroke patients using deep 

learning algorithms. The study applied Recurrent Neural Networks 

(RNN), Gated Recurrent Unit (GRU), Long-Short-Term-Memory 

(LSTM), and Transformer to analyze Microsoft Kinect data from the 

Toronto Rehab Stroke Pose dataset. The models were trained with focal 

loss to address imbalanced data distribution. The simulation results 

showed that the proposed deep learning algorithms are effective in 

detecting compensatory movements. The GRU-based models provide the 

fastest results and the transformer models exhibit the best accuracy and 

fastest inference time on the employed CPU. 
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1. Introduction  

Many stroke survivors experience 

compensatory movements after the stroke, which 

results in poor functional outcomes [1]. After the 

stroke, it may take some time for the motor skills 

to be established, and the goal of the rehabilitation 

in stroke survivors is to improve these skills. 

However, it has been observed that the patients 

habitually do some additional movements to 

achieve the required motor skills [2]. For example, 

instead of stretching the arm to grasp an object, 

they may lean forward to reach that. Studies 

suggest that improper compensatory movement 

reduces the effect of rehabilitation on the patients 

[3]. Hence, it is essential to identify the 

compensatory movements during rehabilitation and 

prevent the patients from doing them.  

Moreover, the joints of nine volunteers are 

captured in [4] during upper limb rehabilitation 

exercises with Microsoft Kinect. By analyzing the 

joint’s statistical properties (mean and standard 

deviation) during movements, they concluded that 

these characteristics could be used for detecting 

compensation. However, no accuracy was reported 

for this approach. The researchers mentioned in [5] 

while a robotic arm can help a patient do the 

necessary exercises, it cannot ensure any 

compensation. Because of that, they used a Kinect 

camera in combination with their robotic arm to 

detect the compensation. The joint locations were 

obtained from the Kinect camera. Then, the joint is 

derived using simple vector analysis. A simple 

thresholding technique was used for finding the 

compensation based on the angle.  

A comprehensive dataset has been collected, 

called Toronto Rehab Stroke Pose Dataset 

(TRSPD) from nine stroke survivors and ten 

healthy participants during exercises with Kinect 

[6]. They used a similar strategy, namely simple 

thresholding. However, simple thresholding is not 

a robust and accurate method. The authors of [6] 

have done another work, and Machine Learning 

algorithms like Support Vector Machine (SVM) 

and Long-Short-Term-Memory (LSTM) were 

employed to enhance the accuracy of the 

prediction [7]. Since the stroke survivors and 

healthy participant data had different 

characteristics, the models were trained and 

evaluated separately. 

The TRSPD is a dataset with an imbalanced 

number of samples in each class. In order to solve 

the skewed classes issue, the authors of [8] 

combined several Machine Learning techniques 

like random under-sampling, oversampling, 

weighted cost (a cost function that is more 

sensitive to the classes with a lower number of 

instances) with the SVM classifier. Based on the 

idea which the random forest performs well on the 

imbalanced datasets, they also used random forest, 

weighted random forest, and isolation forest for 

classification. Like the experiments done in [7], the 

validation set was the same as the training set. 

Each algorithm was trained and evaluated on 

healthy participant data and stroke survivors’ data 

independently. Although it is essential in machine 

learning to check for the generalization ability of 

the model by training and validating the algorithm 

on different sets, however [8] and [7] both trained 

and evaluated their approaches on a similar set.  

A robot contact language has been proposed in 

[9] for manipulation planning and a manual control 

of a social robotic arm has been discussed in [10]. 

The implementation of reinforcement learning is 

another approach to handle unforeseen situation for 

a robotic system upon request [11]. In addition to 

the Kinect-based approaches, other equipment and 

sensor have been used in the literature for 

compensatory movement detection. The authors of 

[12] placed pressure mapping sensors on the chair 

and claimed that the patterns of the distribution of 

pressure on the chair are different for different 

compensations. They trained an SVM classifier to 

detect the compensation based on the extracted 

data from these arrays of pressure sensors.  

The work done in [13] was based on attaching 

electrodes to the subject body and collecting the 

surface electromyography (sEMG) data to detect 

the compensation. The electrodes must be attached 

carefully to the patient’s body in the appropriate 

locations. Commercial motion trackers like 

VICON are another option that provides accuracy 

within 0.01 mm, but the high price of setting up 

multiple cameras and their markers is a crucial 

limit [14]. The location of the joints can be tracked 

in the RGB images with the pose estimation 

network. In the reference [15], the famous 

OpenPose network [16] was applied to extract the 

location of the joints from the RGB images.  

In the 2D images, the Depth information is lost, 

and because of that, 2 RGB cameras have been 

manipulated to reconstruct the lost information. It 

is computationally expensive to process two 

images simultaneously while running a heavy 

network like OpenPose. Among the approaches in 

the literature, detecting the compensatory 

movements based on the Kinect is more 

economical but yet practical. Hence, in this paper, 

the Kinect camera data will be used for identifying 

these abnormal movements during the exercises. 

Sequential composition is another control approach 

which has been implemented in [17], [18] to 

enable cooperation between robotic manipulators 

and mobile robots [19]. 

This paper investigates the use of deep learning 

algorithms, namely Recurrent Neural Networks 
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(RNNs), Gated Recurrent Units (GRUs), Long-

Short-Term-Memories (LSTMs), and the 

Transformers to detect compensatory movements 

in stroke patients during upper limb rehabilitation. 

Moreover, it explores the use of Microsoft Kinect 

data from the Toronto Rehab Stroke Pose dataset 

and the training of the models using focal loss to 

address the issue of imbalanced data distribution.  

2. Implemented dataset  

In this paper, the TRSPD is used for training 

and evaluation, see [6] for detailed information.  

The both healthy (10 candidates) and stroke 

survivors (9 candidates) attended the experiments. 

At each frame, the X-Y-Z coordinates of 25 joints 

of the subject were captured in the Kinect frame, 

then translated to the participant-centric coordinate 

frame. The joint coordinates were normalized in 

the preprocessing to make the data invariant to the 

body size [7]. The compensatory movements in 

this dataset are 1- No Compensation (NC), 2- Lean 

Forward (LF), 3- Shoulder Elevation (SE), 4- 

Trunk Rotation (TR). The distribution of the data 

in each class has been given in Table 1. The NC 

class has the highest frequency in both subsets, and 

the dataset is imbalanced. 

Table 1. The distribution of data in each class 

Participant NC LF SE TR 

Healthy 32,697 4,424 8,030 4,759 

Stroke Survivors 19,103 290 1, 023 519 

3. Deep learning algorithms 

The idea of this work is take the coordinates of 

the joints and model them with sequential models. 

Each tuple of (X, Y, Z) is treated as a member of a 

sequence, and a whole sequence consists of 25 

tuples. The problem of sequential data modeling is 

one of the noticed fields in artificial intelligence. 

Therefore, there are lots of algorithms developed 

for this problem recently. In this section, famous 

algorithms are introduced and explained. 

3.1. Long-Short-Term-Memory (LSTM) unit 

For the first time, this method was proposed by 

Hochreiter and Schmidhuber in [20]. This method 

was a significant improvement in the regiment of 

Recurrent Neural Networks (RNN) architectures. 

Since then, some LSTM versions have been 

developed that have different modifications of the 

naive implementation of LSTM. In this paper, we 

used the implementation that has been used in 

[21]. In this implementation, every LSTM unit 

memorizes    at time  . According to this, the 

output of the LSTM unit    obtain from [22] as 

          (  )  (1) 

To compute LSTM output, we need output 

gated that that modulates the amount of memory 

content exposure. So, the output gate computes by 

    (             )           (2) 

where   is a logical sigmoid function and    is an 

output gate bias. To update the memory cell, the 

both existing memory and new memory have been 

used as 

                 ̃   (3) 

where    and    are the forget gate matrix and input 

gate matrix, respectively. These matrices are 

computed by 

    (                       )  (4) 

    (                     ) (5) 

The new memory is also calculated from 

 ̃      (             )  (6) 

Please note that in these formulations,   ,    and    

are diagonal matrices. are diagonal matrices. The 

primary difference between traditional recurrent 

unit and LSTM is the introduced gates. These 

gates give LSTM the capability to handle the 

essential information over a long period and 

maintain the essential input features over time. 

3.2. Gated Recurrent unit 

The Gated Recurrent Unit (GRU) is an improved 

version of a standard recurrent neural network that 

using a gating mechanism [23]. The GRU uses cell 

memory to save sequence information, same as 

LSTM. As regards this method does not have 

separate memory cells. This feature is due to 

simpler architecture and faster trains. The GRU 

activation function at each time step computes 

from the compilation of previous time step 

activation      and candidate activation   ̃. This 

vector holds information for the current unit and 

passes it down to the network [22], as 

   (    )           ̃   (7) 

For obtaining    calculation for the update gate    

and candidate activation   ̃ is needed. The update 

gate    helps the model determine how much of 

the past information (from previous time steps) is 

helpful to keep for future steps. To compute the 

update gate, (8) is used. 

    (             )  (8) 

The candidate activation   ̃ or new memory 

content will use the reset gate to store the relevant 
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information from the past. It is calculated as 

follows 

  ̃      (       (       ))  (9) 

where    is a set of reset gates. This gate must 

decide how much of the past information to forget. 

The  

 

Figure 1. The transformer architecture, taken from [24] 

 

formula of the reset gate is very similar to the 

update gate. The only difference is because of the 

weights and the gate’s usage 

    (             )  (10) 

3.3. Transformer unit 

The transformer networks are a type of deep 

learning algorithm that uses encoder-decoder 

architecture based on attention layers. Same as the 

last two methods, the transformer is used for 

sequential input data. However, the significant 

difference between this method and RNN is that 

the transformers do not necessarily process data in 

order and can pass input in parallel [24]. 

The transformer was initially released for 

translating from a source language to a target 

language. Because of that, like other algorithms for 

solving the translation task, the transformer 

consists of an encoder-decoder architecture. The 

transformer architecture is shown in Figure 1. 

There is no need for a decoder for the sequence 

classification task (like the one used in this paper). 

Hence, only the encoder part is considered. At the 

beginning of the encoder, a positional encoder is 

added to the projected input sequence. This 

positional encoder helps the network to remember 

the relative position of the members of the input 

sequence. Inside the encoder, the network maps an 

input sequence to a sequence of continuous 

representations with its sub-layers. The function of 

each encoder layer is to generate encodings that 

contain information about the connection of each 

part of the input together. 

As shown in Figure 1, each encoder unit 

contains two blocks: multi-Head attention and 

feed-forward network. In the encoder, each sub-

layer is followed by layer normalization [25]. The 

attention layer is a function that can access all 

previous states and weights. The attention layer 

does this work with three inputs called query, key, 

and value as follows 

         (     )  

                                       (
    

√  
)    

 

(11) 

where    is dimension of queries and keys. The 

multi-head attention sub-layer is the part of the 

architecture that uses the attention function. The 

output of multi-head attention is calculated as 

         (     )  

                              (              )   
 

(12) 

where       is defined by 

      

                         (    
      

      
 ) 

 
(13) 

This is common to feed the three inputs of the 

multi-head attention with the same values. This 

idea is followed in this study. 

3.4. Focal loss function  

In object detection, lots of the area in the image 

belongs to the background, as described in [26]. 

The focal loss, which is an extension to the binary 

cross-entropy loss, was introduced to resolve this 

issue. The binary cross-entropy can be written as 

          ̂  (   )    (   ̂)  (15) 

where   is the true label and  ̂ is the predicted 

probability. The focal loss modifies this loss 

function with an imbalance handling parameter α 

and a modulating factor which is a function of   

and the  ̂ is given by 

    (   ̂)        ̂  

                                   (   )    (   ̂)
 

(16) 

The modulating factor   scales down the loss 

both for correctly classified and misclassified 

samples but the scaling factor lowers the loss value 

for true predictions much more than it lowers the 
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loss value for misclassified instances. Thus, the 

importance of the misclassified instances 

increases. The focal loss can be extended to multi-

class classification with a minor modification [27] 

as 

     (   ̂)       ( ̂)  (16) 

where   is a one-hot vector which shows the true 

class and  ̂ is a vector of probabilities obtained 

from applying softmax function. Since the TRSPD 

dataset suffers from the imbalanced distribution, 

the modified version of the focal loss is applied in 

this paper to enhance the accuracy of prediction for 

all classes.  

3.5. Implemented deep learning models 

The models used in this paper are based on the 

recurrent (Simple RNN, GRU, LSTM) and also the 

attention (Transformer) mechanisms. The recurrent 

models were implemented with one recurrent layer 

with 20 units with the ReLU output activation. To 

check for the possibility of increment in the 

accuracy with increasing the depth of the network 

in this study, these models also have been 

deployed with two recurrent layers. However, the 

number of units in each layer was set to 10. In both 

cases, the output of the recurrent layers goes 

through a fully connected layer with ten neurons. 

This fully connected layer is connected to the 

classifier. 

The transformer models require the same input 

size all over the transformer layers. So, in the case 

of the transformer models, only the depth of the 

network is increased from 1 to 2, but the number of 

the units in these layers remains unchanged. The 

number of the attention heads is set to 12. The 

attention is only calculated across the patch 

dimension. Same as the recurrent models, the 

output of the transformer layers is followed by a 

fully connected layer with ten neurons. The output 

of this fully connected layer is used for 

classification. 

4. Simulation results 

In this section, experiments will be conducted 

on the TRSPD dataset. All the models have been 

trained with a batch size of 128 for 50 epochs in all 

experiments. The initial learning rate is set to 0.01, 

and the Adam optimizer optimizes the loss 

function. Although it is not convenient in deep 

learning to train and test on the same set, this 

strategy is compared to the works done in the 

literature. All the models were trained on the 

healthy participant data and evaluated on the same 

dataset in the first experiment. The results are 

given in Table 3. The trained models have obtained 

better performance in terms of per class and 

average precision, recall, and F1 score compared to 

the works done in [8] and [7]. The LSTM and 

GRU with one recurrent layer have achieved the 

highest F1 score compared to the other models. 

Except for the simple RNN models, other F1 

scores are close to each other. 

After training on the healthy people data, the 

models were evaluated on the patients’ data, but all 

the models failed to classify the patient’s data with 

acceptable precision. The precision was only high 

in the NC class (over 90%), while the precision on 

all other classes was below 30%. This may be due 

to the discrepancy between the behavior of healthy 

and stroke survivors during the exercises, which 

makes different patterns in the collected sets. 

In the second experiment, the data collected 

from the stroke survivors were used for training 

and evaluation. The results of the evaluation are 

presented by Table 4. In this case, the issue of an 

imbalanced dataset was more severe. The models 

 

Figure 2. The evaluation results of the proposed models on the validation subset 
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trained in [8] and [7] failed to reach an acceptable 

performance for all classes and only performed 

well on the class NC with the highest number of 

samples in the dataset. The focal loss has helped 

the networks to overcome the skewed classes issue. 

In this case, the transformer model with two layers 

obtained the best F1 score. After that, the 

transformer model with one layer, then the GRU 

with two layers, has the highest score.  

In the LSTM and GRU case, the models with 

two layers reached better accuracy than the models 

with one layer, but the results are pretty close to 

each other (only 1% different in average F1-score). 

This can be because of the random weight 

initializing, data selection, or the number of the 

trainable parameters. In the case of the RNN, the 

model with one layer had better performance, 

while in the previous experiment, the situation was 

different. This is because the number of samples 

for stroke survivors was less than the total data for 

healthy people. The complexity and number of the 

trainable parameters were not adequate in the case 

of the RNN, and the accuracy increased with 

increasing the trainable parameters. 

It should be noted that other algorithms were 

also implemented in [8] (SVM) and [7] (SVM + 

under-sampling, SVM + oversampling, etc.), but in 

the previous experiments, the best performing 

methods from those papers were compared to the 

implemented algorithms in this paper. 

4.1. Generalization  

To check whether the models could extend what 

they learned from the data to further unseen 

examples, the experiments were conducted again 

with a different strategy. Around 80% of the data 

from the healthy participant were randomly 

selected for training, and the rest of the dataset was 

used for validation. 

The networks were trained from scratch, and 

Figure 2 shows the outcome of the experiment. 

Again, in this experiment, the RNN showed the 

lowest F1-score compared to the others. The 

transformer with one layer and the GRU models all 

reached the same performance in terms of the 

average F1-score. It seems the number of trainable 

parameters was a bit high for LSTM models and 

the transformer model with two layers. Although 

they showed an acceptable result, their accuracies 

are slightly lower than the accuracy of the GRU 

and one-layer transformer. Other metrics like 

precision, and recall are also calculated. The full 

results are presented in Table 7. 

The stroke survivor’s data were also split with 

the same rate (80% for training and 20% for 

validation). All the models were trained from 

scratch. Figure 3 represents the results. In this 

respect, the transformer model with two layers and 

GRU with one layer outperforms all the other 

models. After them, the transformer model with 

one layer has the best F1 score, and the LSTM 

models perform better than the simple RNN 

models. The evaluation information is given in 

Table 8. 

4.2. Speed Test 
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The compensatory movement detection 

algorithm must perform real-time predictions 

during the exercise. A speed test has been 

conducted on all of the models. Due to the recent 

advancement in deep learning, many research 

centers are equipped with GPU accelerated 

systems, but many medical rehabilitation centers 

do not have GPUs. Because of that, the tests are 

carried out both with GPU and CPU. The system 

specification is presented in Table 2. A random 

sample was chosen as the input for the networks, 

and the networks made one thousand predictions 

on that sample; then, the average prediction time 

was calculated and reported in Error! Reference 

source not found.. 

When the models are running on the CPU, the 

transformer model with one layer is the fastest, and 

after that, RNN with one layer and transformer 

with two layers has the least prediction time. The 

GRU model has fewer parameters compared to 

LSTM, but on CPU, they are slower than LSTM 

models. The tests were performed multiple times, 

and in each test, the results followed the same 

pattern. 

In order to take advantage of GPU accelerated 

calculation with GRU and LSTM, some conditions 

need to be satisfied. The activation of the output 

and recurrent units should be Tanh and Sigmoid, 

respectively. If the activations are chosen 

differently, GPU cannot speed up the calculations 

for these two models. The GRU model with one 

layer is the fastest when the GPU is enabled. In the 

case of the simple RNN and the transformer 

models, the improvement is insignificant. 

 

Figure 3 The evaluation results of the proposed models on the validation subset of the patient data, where (1L), and 

(2L) show the number of recurrent (or attention) layers 

 

 

Figure 4 The evaluation results of the proposed models on the validation subset of the patient data, where (1L), and 

(2L) show the number of recurrent (or attention) layers 
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Table 2. Device specification 

CPU Intel(R) Xeon(R) 

CPU Freq. 2.30GHz 

RAM 12GB 

GPU Nvidia T4 

GPU memory 12GB 

4.3. Occlusion  

So far, the assumption was that the Kinect had 

captured the location of 25 joints in each frame. 

However, during rehabilitation, some joints may be 

occluded, and therefore, the accuracy of the 

models would drop. In order to make the models 

robust to the occlusion, the following experiment 

has been conducted. A dropout layer with a 

dropping rate of 20% was added after the input 

layer. This dropout layer would synthesize the 

effect of occlusion by randomly removing the 

information of 5 joints in each iteration. Thus, the 

trained models do not depend on the presence of 

all the joints for each prediction. The models were 

trained on the training subset of the dataset for the 

healthy participant and stroke survivors.  

 Figure 5, shows the F1 score of all the models 

for each class on the validation subset of the 

healthy participant. Compared to the previous 

results, the average accuracy of all models has 

decreased, but the transformer-based models are 

affected more petite than the others. The evaluation 

result on the validation subset of the stroke 

survivor’s data in Figure 6 indicates that the LSTM 

and RNN based models are highly affected by the 

occlusion while the transformer and GRU based 

models maintained their performance. Again, the 

transformer-based models have the highest 

accuracy. The full detailed results on healthy 

participant and stroke survivors’ data are presented 

in Table 5 and Table 6, respectively. 

5. Discussion and conclusion  

This paper selected the TRSPD to train the 

RNN, GRU, LSTM, and transformer models to 

detect compensatory movements during the 

 
Figure 5 The evaluation results of the proposed models on the validation subset of the patient data, where (1L), and 

(2L) show the number of recurrent (or attention) layers 

 

 
Figure 6 The simulation results of speed test 
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rehabilitation exercises. The dataset included 

recorded coordinates of 25 joint subjects from 

healthy and stroke survivors during upper limb 

rehabilitation training. The dataset had a very 

imbalanced distribution, especially for the patient 

data. The modified version of the focal loss was 

deployed to help the model accuracy increase even 

for the samples with low frequency. The obtained 

results indicate that this goal was accomplished. In 

the experiments on the healthy participants, the 

GRU models showed better performance than the 

other ones, and the transformer model results were 

pretty close to the GRU models. In the experiments 

with the stroke survivors, the transformer models 

performed better than all the other techniques, 

while the GRU accuracy is close to transformer 

models. 

Using the Microsoft Kinect in combination with 

a neural network model can detect compensatory 

movement. This economical approach can be 

accurate enough to be used in practice, but 

precaution needs to be taken. In some situations, 

some joints may be occluded, and this is not 

studied in this paper. Moreover, although the 

number of the data was adequate for training, the 

limited number of participants (9 stroke survivors 

and ten healthy people) may not be enough to 

claim that the generalization ability of the trained 

models is reliable enough to be used by itself in the 

clinics without the supervision of any experts. 

However, the algorithm can be employed to help 

them. This paper selected the TRSPD to train the 

RNN, GRU, LSTM, and transformer models to 

detect compensatory movements during the 

rehabilitation exercises.  

The dataset included recorded coordinates of 25 

joint subjects from healthy and stroke survivors 

during upper limb rehabilitation training. The 

dataset had a very imbalanced distribution, 

especially for the patient data. The modified 

version of the focal loss was deployed to help the 

model accuracy increase even for the samples with 

low frequency. The obtained results indicate that 

this goal was accomplished. In the experiments on 

the healthy participants, the GRU models showed 

better performance than the other ones, and the 

transformer model results were pretty close to the 

GRU models. In the experiments with the stroke 

survivors, the transformer models performed better 

than all the others, and the GRU accuracies were 

close to transformer models. 

The speed test results show that the GRU-based 

models perform the best when using a GPU as an 

accelerator, with minimal latency. This means that 

real-time predictions can be performed efficiently 

during an exercise session. On the other hand, the 

transformer-based models performed well on the 

CPU, with a maximum delay of 20 milliseconds. 

This performance is sufficient for real-time 

applications with the Kinect device, which 

captures 30 frames per second. It is important to 

note that many medical rehabilitation centers do 

not have GPU systems and the test results indicate 

that the transformer models can perform well even 

on a CPU-only system. 

Since occlusion is inevitable in real-life 

applications, a dropout layer was added at the input 

of the networks to synthesize the effect of 

occlusion. The dropout layer randomly removed 

the information of 5 joints in each iteration, thus 

making the models independent of the presence of 

all the joints. The models were trained on the 

training subset of the dataset for healthy 

participants and stroke survivors. The results 

showed that the average accuracy of all models 

decreased after the addition of the dropout layer, 

but the transformer-based models were less 

affected than the other models. The LSTM and 

RNN models were highly affected by the 

occlusion, while the transformer and GRU models 

maintained their performance, with the transformer 

models having the highest accuracy.  

In conclusion, using the Microsoft Kinect in 

combination with a neural network model can 

detect compensatory movement. This economical 

approach can be accurate enough to be used in 

practice, but precaution needs to be taken. 

Although the number of the data was adequate for 

training, the limited number of participants (nine 

stroke survivors and ten healthy people) may not 

be enough to claim that the generalization ability 

of the trained models is reliable enough to be used 

by itself in the clinics without the supervision of 

any experts. However, the algorithm can be 

employed to help them. 

6. Future work 

The paper presented in this study has shown the 

feasibility of using deep learning algorithms, such 

as RNN, GRU, LSTM, and Transformer, to detect 

compensatory movements in upper limb 

rehabilitation. However, there is room for 

improvement and further research to fully realize 

the potential of deep learning algorithms for 

compensatory movement detection. This can be 

achieved by optimizing the models through 

incorporating other deep learning algorithms and 

feature engineering techniques, expanding the 

scope of the study to include other types of 

movements and parts of the body, and evaluating 

the performance of the models on larger and more 

diverse datasets. Additionally, exploring the 

relationship between compensatory movements 

and other rehabilitation outcomes, validating the 

models through clinical trials, and incorporating 

them into a rehabilitation system could provide 
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valuable insights into their practical utility and 

potential for widespread use. 
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Table 3. The evaluation result of the examined models on 

the entire healthy people data 

Models class Precision Recall F1 No. 

param 

 

RNN 

(1 layer) 

NC 98 98 97  

 

734 

LF 99 90 94 

SE 90 96 93 

TR 95 97 96 

Avg. 95 95 95 

 

RNN 

(2 layers) 

NC 97 98 97  

 

504 

LF 99 90 94 

SE 94 93 94 

TR 92 97 94 

Avg. 96 95 95 

 

GRU 

(1 layer) 

NC 99 100 99  

 

1754 

LF 100 98 99 

SE 99 96 98 

TR 99 98 99 

Avg. 99 98 99 

 

GRU 

(2 layers) 

NC 98 99 99  

 

1264 

LF 96 98 97 

SE 98 94 96 

TR 98 97 97 

Avg. 98 97 97 

 

LSTM 

(1 layer) 

NC 100 99 99  

 

2174 

 

LF 97 95 98 

SE 97 99 99 

TR 99 95 99 

Avg. 98 97 99 

 

LSTM (2 

layers) 

NC 99 99 99  

 

1554 

LF 99 99 97 

SE 97 97 98 

TR 99 97 97 

Avg. 98 98 98 

 

Transformer 

(1 layer) 

NC 99 99 99  

 

1491 

LF 98 99 98 

SE 98 97 98 

TR 100 99 98 

Avg. 99 99 98 

 

Transformer 

(2 layers) 

NC 99 99 99  

 

2091 

LF 96 99 98 

SE 98 97 98 

TR 99 99 99 

Avg. 99 99 98 

 

LSTM [7] 

NC 81 90 86  

 

- 

LF 84 77 81 

SE 31 24 27 

TR 66 45 53 

Avg. 65 59 62 

 

Weighted 

Random 

Forest [8] 

NC - - 82  

 

- 

LF - - 80 

SE - - 27 

TR - - 53 

Avg. - - 60 
 

Table 4. The evaluation result of the examined models on 

the entire patient data 

Models class Precision Recall F1 No. 

param 

 

RNN 

(1 layer) 

NC 96 98 97  

 

734 

LF 71 93 80 

SE 69 65 67 

TR 70 18 29 

Avg. 76 68 68 

 

RNN 

(2 layers) 

NC 97 98 97  

 

504 

LF 78 90 83 

SE 79 78 78 

TR 70 26 38 

Avg. 81 73 74 

 

GRU 

(1 layer) 

NC 98 99 98  

 

1754 

LF 85 81 83 

SE 95 66 78 

TR 74 85 79 

Avg. 88 83 85 

 

GRU 

(2 layers) 

NC 98 98 98  

 

1264 

LF 77 97 86 

SE 88 85 87 

TR 77 71 73 

Avg. 85 88 86 

 

LSTM 

(1 layer) 

NC 97 99 98  

 

2174 

 

LF 82 90 86 

SE 84 87 85 

TR 77 27 40 

Avg. 85 76 77 

 

LSTM (2 

layers) 

NC 98 97 98  

 

1554 

LF 84 87 86 

SE 78 84 81 

TR 66 77 71 

Avg. 82 86 84 

 

Transformer 

(1 layer) 

NC 99 98 98  

 

1491 

LF 76 100 86 

SE 79 95 86 

TR 80 74 77 

Avg. 83 92 87 

 

Transformer 

(2 layers) 

NC 99 98 98  

 

2091 

LF 87 95 91 

SE 85 89 87 

TR 79 73 76 

Avg. 87 89 88 

 

LSTM [7] 

NC 92 97 95  

 

- 

LF 26 13 17 

SE 22 13 7 

TR 43 20 27 

Avg. 46 36 31 

 

Weighted 

Random 

Forest [8] 

NC - - 83  

 

- 

LF - - 1 

SE - - 6 

TR - - 25 

Avg. - - 29 
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Table 5. The evaluation result on healthy participant 

data with occlusion 

Models class Precision Recall F1 No. 

param 

 

RNN 

(1 layer) 

NC 86 99 92  

 

734 

LF 95 65 75 

SE 94 93 93 

TR 100 34 50 

Avg. 94 73 78 

 

RNN 

(2 layers) 

NC 81 96 88  

 

504 

LF 61 3 6 

SE 75 98 85 

TR 100 38 55 

Avg. 66 54 58 

 

GRU 

(1 layer) 

NC 92 99 96  

 

1754 

LF 96 86 91 

SE 100 89 94 

TR 99 70 82 

Avg. 97 86 91 

 

GRU 

(2 layers) 

NC 90 98 94  

 

1264 

LF 97 80 87 

SE 91 96 94 

TR 98 55 71 

Avg. 94 82 86 

 

LSTM 

(1 layer) 

NC 91 99 95  

 

2174 

 

LF 100 75 86 

SE 93 98 95 

TR 98 62 76 

Avg. 95 83 88 

 

LSTM (2 

layers) 

NC 93 99 96  

 

1554 

LF 95 90 93 

SE 95 97 96 

TR 99 65 79 

Avg. 95 88 91 

 

Transformer 

(1 layer) 

NC 97 96 97  

 

1491 

LF 81 98 88 

SE 98 94 96 

TR 97 89 93 

Avg. 94 93 94 

 

Transformer 

(2 layers) 

NC 98 97 97  

 

2091 

LF 94 97 96 

SE 97 90 94 

TR 89 99 94 

Avg. 95 96 95 
 

Table 6. The evaluation result patient data with occlusion 

 

Models class Precision Recall F1 No. 

param 

 

RNN 

(1 layer) 

NC 86 99 92  

 

734 

LF 95 65 75 

SE 94 93 93 

TR 100 34 50 

Avg. 94 73 78 

 

RNN 

(2 layers) 

NC 81 96 88  

 

504 

LF 61 3 6 

SE 75 98 85 

TR 100 38 55 

Avg. 66 54 58 

 

GRU 

(1 layer) 

NC 92 99 96  

 

1754 

LF 96 86 91 

SE 100 89 94 

TR 99 70 82 

Avg. 97 86 91 

 

GRU 

(2 layers) 

NC 90 98 94  

 

1264 

LF 97 80 87 

SE 91 96 94 

TR 98 55 71 

Avg. 94 82 86 

 

LSTM 

(1 layer) 

NC 91 99 95  

 

2174 

 

LF 100 75 86 

SE 93 98 95 

TR 98 62 76 

Avg. 95 83 88 

 

LSTM (2 

layers) 

NC 93 99 96  

 

1554 

LF 95 90 93 

SE 95 97 96 

TR 99 65 79 

Avg. 95 88 91 

 

Transformer 

(1 layer) 

NC 97 96 97  

 

1491 

LF 81 98 88 

SE 98 94 96 

TR 97 89 93 

Avg. 94 93 94 

 

Transformer 

(2 layers) 

NC 98 97 97  

 

2091 

LF 94 97 96 

SE 97 90 94 

TR 89 99 94 

Avg. 95 96 95 
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Table 7. The evaluation result of the proposed models on 

the validation subset of the patient data  

Models class Precision Recall F1 No. 

param 

 

RNN 

(1 layer) 

NC 97 98 97  

 

734 

LF 84 93 88 

SE 79 51 62 

TR 60 81 69 

Avg. 80 81 79 

 

RNN 

(2 layers) 

NC 95 99 97  

 

504 

LF 96 45 62 

SE 78 50 61 

TR 74 33 45 

Avg. 86 57 66 

 

GRU 

(1 layer) 

NC 98 98 98  

 

1754 

LF 86 100 92 

SE 84 75 81 

TR 69 85 79 

Avg. 85 89 80 

 

GRU 

(2 layers) 

NC 98 98 98  

 

1264 

LF 96 47 63 

SE 85 78 81 

TR 73 86 79 

Avg. 88 77 80 

 

LSTM 

(1 layer) 

NC 97 99 98  

 

2174 

 

LF 91 85 88 

SE 89 74 81 

TR 84 44 58 

Avg. 90 74 81 

 

LSTM (2 

layers) 

NC 98 99 98  

 

1554 

LF 81 97 88 

SE 90 81 85 

TR 78 63 70 

Avg. 87 85 85 

 

Transformer 

(1 layer) 

NC 98 98 98  

 

1491 

LF 86 98 92 

SE 83 79 81 

TR 64 88 74 

Avg. 83 91 86 

 

Transformer 

(2 layers) 

NC 99 98 99  

 

2091 

LF 84 93 88 

SE 82 90 86 

TR 82 71 76 

Avg. 86 88 87 
 

Table 8. The evaluation result of the proposed models on 

the validation subset of the patient data  

Models class Precision Recall F1 No. 

param 

 

RNN 

(1 layer) 

NC 97 98 97  

 

734 

LF 84 93 88 

SE 79 51 62 

TR 60 81 69 

Avg. 80 81 79 

 

RNN 

(2 layers) 

NC 95 99 97  

 

504 

LF 96 45 62 

SE 78 50 61 

TR 74 33 45 

Avg. 86 57 66 

 

GRU 

(1 layer) 

NC 98 98 98  

 

1754 

LF 86 100 92 

SE 84 75 81 

TR 69 85 79 

Avg. 85 89 80 

 

GRU 

(2 layers) 

NC 98 98 98  

 

1264 

LF 96 47 63 

SE 85 78 81 

TR 73 86 79 

Avg. 88 77 80 

 

LSTM 

(1 layer) 

NC 97 99 98  

 

2174 

 

LF 91 85 88 

SE 89 74 81 

TR 84 44 58 

Avg. 90 74 81 

 

LSTM (2 

layers) 

NC 98 99 98  

 

1554 

LF 81 97 88 

SE 90 81 85 

TR 78 63 70 

Avg. 87 85 85 

 

Transformer 

(1 layer) 

NC 98 98 98  

 

1491 

LF 86 98 92 

SE 83 79 81 

TR 64 88 74 

Avg. 83 91 86 

 

Transformer 

(2 layers) 

NC 99 98 99  

 

2091 

LF 84 93 88 

SE 82 90 86 

TR 82 71 76 

Avg. 86 88 87 
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