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 This paper, proposes a methodology to implement a suitable nonsingular 

terminal sliding mode controller associated with the output feedback 

control to achieve a successful trajectory tracking of a non-holonomic 

wheeled mobile robot in presence of longitudinal and lateral slip 

accompanied. This implementation offers a relatively faster and high 

precision tracking performance. We investigate this approach and 

demonstrate its feasibility for such situations where robustness against 

perturbation and measurement errors are required. In this study, tyre-forces 

are considered as perturbation. These forces appear because of wheel slip 

of the wheeled mobile robot moving at high speed or on a slippery surface. 

The need to compensate these forces are achieved through a design of an 

intelligent estimation paradigm. The estimator is realized by a fuzzy logic 

model that requires slip angle and slip ratio as inputs. The weight of the 

robot mechanical structure is an important parameter in this design. In fact, 

it is used to adjust the gain of the output, resulting in a fuzzy estimator that 

synthesizes the magic formula for a large model of tyres. Simulation results 

are reported and discussed. 
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1. Introduction 

Outdoor wheeled mobile robot (WMR) 

navigation has stood as an open and 

challenging problem over decades. This is 

because an autonomous mobile robot must be 

able to operate in an unstructured environment 

and deal with its dynamic changes. Despite the 

number of significant results obtained in this 

field, people still look for better solutions for 

faster mobile robots. Nonholonomic mobile 

robot are subjected to the nonholonomic 

constraint and generally navigate in 

environments cluttered with obstacles. Since 

the non-holonomic constraint makes path 
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planning more difficult [1], many techniques 

have been proposed to plan and generate paths 

[2, 3]. Moreover, the kinematic constraint is the 

other problem that can face trajectory planning. 

This can make time derivatives of some 

configuration variables non-integrable and 

hence, a collision free path in the configuration 

space may not be achieved by steering control 

[4]. In the past decades, people have tried 

different schemes of control laws, adapted to 

cope with these problems. Nonlinear control 

technique, for mobile robots, represented an 

alternative design method for control of the 

unknown nonlinear systems. The proposed 

control laws could compensate the effects of 

the nonlinearities under parametric 

uncertainties [5, 6]. In [7], Sarkar investigated 

the nonholonomy problem and suggested a 

control algorithm while assuming no-slip 

constraint at the contact point between the 

wheel and the ground surface. His work was 

the basis of many other contributions (e.g., 

[8]). However, feedback linearization does not 

allow stabilizing the mobile robot to a fixed 

position. On the other hand, the effect of 

parameter uncertainties and disturbances may 

result in unpredictable results. Moreover, for 

mobile robots operating at high speed and/or in 

unstructured environment, the assumption of a 

pure rolling does not hold and consequently 

slip constraints are no more negligible. In this 

case, performance degradations may be 

observed if the controller is not properly 

designed. These limitations conducted 

researchers to think of using other approaches. 

Variable structure theory [9-11] and its 

associated sliding mode behaviour have been 

considered as an excellent robust candidate 

approaches to control mobile robots subjected 

to parameter changes and disturbances. When 

the system uncertainties and external 

disturbances are bounded, conventional sliding 

mode control can guarantee stability and 

provides the required performances. However, 

with this control scheme, equilibrium point 

cannot be reached in a finite time. To overcome 

this problem, terminal sliding mode control 

(TSMC) is proposed [12-15]. Nevertheless, 

still with this improved sliding mode control, 

one can face two disadvantages. The first is the 

existence of a singularity point problem. The 

second is the requirement for any 

compensation that comes from any drift when 

the ideal no slip assumption does not hold true. 

The non-singular terminal sliding mode control 

proposed in [16-22] solves the first issue. The 

second issue is raised when we need to include 

slip into the dynamic of the system. This 

relaxes the assumption of the pure rolling and 

approach the motion of the WMR to the pure 

reality. In the literature, few studies, related to 

this topic, have been investigated. One of the 

earliest paper that considered wheel slip as an 

important aspect can be found in [23], where a 

model has been derived considering the 

adhesion coefficient between the wheels of the 

robot and the surface as a function of the wheel 

slip. Many other works considered this issue 

unavoidable and arrived in publishing 

important results [24-27]. 

The main contributions of this paper are 

summarized as below: 

i. We included the slip and the skidding of the 

wheels into the dynamic model of the WMR 

such that it can be modeled as a perturbed 

model. 

ii. According to that, a fuzzy logic based 

estimator is designed on the basis of a 

known curves obtained by the well-known 

magic formula and generalized to a broad 

range of tyres through the WMR weight 

based gain.  

iii. The basic idea of finding the control law is 

to transform partially the system into a 

linear system. Inspired by the work of Feng 

et al [18], we propose a robust controller 

based on a non-singular terminal sliding 

mode control  

The fuzzy estimator is inserted in the forward 

loop and serves in estimating the forces 

resulting from longitudinal and lateral wheel 

slip to anticipate the required compensation. 

The inputs of the fuzzy estimator are the slip 
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ratio and the slip angle. Their values are 

supposed to be available through adequate 

equipment measurements. One of the few 

attempts found in the literature is the work of 

Jayachandran et al [28]. However, their work 

is limited merely in comparing the results 

obtained, for one specific type of tyre, with the 

magic formula. To the best of our knowledge, 

our proposed approach is considered as a new 

contribution. Actually, the uncertain dynamics 

including uncertain parameters between tire 

force and tire slip are difficult to model 

accurately, which will limit the performance of 

model-based control methods. Generally, these 

parameters are obtained through experience for 

each type of tyre. Fuzzy logic provides a 

mathematical framework to deal with 

uncertainties inherently contained in input data 

and its associated membership functions.  

The remainder of this paper is organized as 

follows. In section 2 we elaborate the 

kinematic and dynamic models of the 

nonholonomic wheeled mobile robot, section 3 

presents the non-singular finite time sliding 

mode control for the dynamical model obtained 

in section 2. In section 4, we present the fuzzy 

logic based approach for estimating the tyre 

forces for different slip ratios and slip angles. 

Section 6 provides simulation results and 

section 7 concludes the paper. 

 

2. Kinematics and Dynamic Model 

Elaboration of the WMR 

2.1 Kinematic model 

The model of the WMR is presented in Fig. 

1. The model takes into account the two 

diametrically opposed drive wheels of radius r, 

the distance between the wheels is 2b and the 

right and left angular speeds of the drive 

wheels are successively R and L. 

 

 

 
Fig 1.WMR configuration 

 

The configuration of the wheeled mobile robot 

is (xG, yG, )T, (Fig. 1), where xG, and yG 

represent the center of mass of the robot and  

its orientation with respect to the inertial frame. 

We consider the center of mass at point G 

distant from the origin C of the robot 

coordinate system by a distance d. The 

coordinates of points G and C are (xC, yC) and 

(xG, yG) respectively.  

 

2.2 Dynamic modeling of the WMR subject 

to longitudinal and lateral slips. 

In this section, the assumption of pure 

rolling and zero lateral slips is not considered. 

Therefore, the new dynamic model is more 

realistic and introduces the longitudinal as well 

as the lateral slips. The generalized coordinate 

q vector introduces the new state variables that 

are related to slippery and defined as 𝜉𝑖 and 𝜂𝑖, 

i = 1, 2, …, for the longitudinal and lateral slippery 

respectively. Taking into account these new 

state variables, the assumptions can be 

formulated in a three constraint equations [25]. 

The longitudinal constraints for the right and 

left wheels are presented as 
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cos sinr r G Gr x y b    = − − −  

   (1-a) 

cos sinl l G Gr x y b    = − − +  

   (1-b) 

The two wheels of the WMR are rigidly 

connected to the body of the WMR and thus 

cannot have two different lateral slips. Hence, 

the two lateral equations have the same 

expression written as, 

cos sinr l G Gy x d     = = = − −  

   (1-c) 

Note that most of the time the lateral slip may 

occur along the turning axis of the WMR 

during cornering. The generalized coordinate 

vector is defined to be: 𝑞 = [𝑥𝐺 , 𝑦𝐺 , 𝜑, 𝜂𝑟 , 𝜂𝑙 ,
𝜉𝑟 , 𝜉𝑙, 𝜃𝑟 , 𝜃𝑙]𝑇. One can write the above 

constraint equations in Pfaffian form as, 

𝐷(𝑞)�̇�=0, such that  

cos sin 0 0 1 0 0 0

cos sin 0 0 0 1 0 0

sin cos 1 0 0 0 0 0

sin cos 0 1 0 0 0 0

b

b
D

d

d

 

 

 

 

 
 

−
 =
 −
 

−  

 

   (1-d) 

 

Let 𝑆(𝑞) ∈ ℝ9x4 be a full rank matrix such that 

columns of S(q) are in the null space of D, and 

consequently S(q) spans N(D). In this case we 

can write, S(q)D(q)=0. As q  is in the null 

space of D there exists a velocity vector v such 

that [8]. 

�̇� = 𝑆(𝑞)𝑣             (2) 

 

Solving the system (1) for the vector 𝑣 =

[�̇�, �̇�𝑟 , �̇�𝑙, �̇�𝑟 , �̇�𝑙] , we obtain the matrix S(q) 

whose expression is (3). 

( ) ( ) ( )

( ) ( ) ( )

cos sin cos sin cos sinsin cos
sin

2 2 2 2

cos sin cos sin sin coscos sin
cos

2 2 2 2

1 1
0

2 2 2 2

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

b d r b d r b dd b

b b b b

d b r d b r b dd b

b b b b

r r

b b b b
S

      


      


− + − + −
− 
 
 − + + −−
 
 

− 
− 

 =
 
 
 
 
 



 




             (3)

 

 

It is assumed that the non-holonomic mobile 

robot have bounded uncertainties and its 

estimated dynamics can be described by the 

equation, 

�̂�(𝑞)�̈� + �̂�(�̇�) = 𝐸(𝑞)𝜏 + 𝐹(�̈�) + 𝐷𝑇(𝑞)𝜆 

   (4) 

 

�̂�(𝑞) = 𝑀(𝑞) + Δ𝑀(𝑞) 

�̂�(�̇�) = 𝐵(𝑞) + Δ𝐵(�̇�) 

This can be written as 

𝑀(𝑞)�̈� + 𝐵(�̇�) = 𝐸(𝑞)𝜏 + 𝐹(�̈�) +
𝜌(𝑞, �̇�, �̈�) + 𝐷𝑇(𝑞)𝜆  (5) 

Such That  

𝜌(𝑞, �̇�, �̈�) = −Δ𝑀(𝑞)�̈� − Δ𝐵(�̇�)  

  (6) 

Multiplying equation (5) by ST(q), we get: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( , ) ( ) ( , , )

rT T

l

T T T

S q E q S q F q

S q M q q S q B q q S q q q q







 
+ = 

 

+ −

 (7) 
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Such that, 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

r

r

rz wz

w

w

w

w

wy

wy

m

m

I I

m

mM

m

m

I

I

 
 
 
 +
 
 
 =
 
 
 
 
 
 
  

; 



































−

−

=

0

0

0

0

0

)(

lw

rw

lw

rw

m

m

m

m

qB

















 ; 

𝐸 = [
0 0 0
0 0 0

    
0 0 0
0 0 0

    
0 1 0
0 0 1

]
𝑇

; 

𝐹(�̈�) = [0 0 0   𝑓𝑙𝑎𝑡𝑟 𝑓𝑙𝑎𝑡𝑙 𝑓𝑙𝑜𝑛𝑔𝑟    𝑓𝑙𝑜𝑛𝑔𝑙 −𝑟𝑓𝑙𝑜𝑛𝑔𝑟 −𝑟𝑓𝑙𝑜𝑛𝑔𝑙]𝑇 

 

Note that 𝐹(�̈�) ∈ ℝ9𝑥1 is a vector of traction 

forces. Expression (7) represents the inverse 

dynamic model of the mobile robot. It helps in 

elaborating the reference signals to be sent to 

the motors. We remark that the torques are 

written in terms of the robot acceleration. 

However, we are usually interested in 

controlling the mobile robot in terms of the 

angular speed and acceleration of the wheels. 

Thus, a relation between the motor torques and 

the system parameters can be established.  

Deriving equation (2), we obtain 

( ) ( )q S q v S q v= +     

  (8) 

 

When substituting q  into equation (7) we get: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , )( ) ( , , )
T T T T T T

S S q F q S S q M q S q v S q M q S q v S q B q qq q q q + = + + +

 (9) 

 

More explicitly, the angular acceleration is 

written as:  

�̇� = (𝑆𝑇(𝑞)𝑀(𝑞)𝑆(𝑞))
−1

𝑆𝑇(𝑞)(𝐸𝜏 −

𝑀(𝑞)�̇�(𝑞)𝑣 − 𝐵(�̇�) + 𝐹(�̈�) + 𝜌(𝑞, 𝑞,̇ �̈�)) (10) 

 

 

3. State space representation 

Le x be the state vector such that 

 
T

x q v=      

  (11) 

The expression of state variables can be readily 

obtained as 

( ) ( )
9 1

1

2

[0]( )

( ) ( ) ( )

x

T T

S q vq
x

v S q M q S q S Ef 
−= = +

   
   
      

   (12) 

where 

𝑓2 = 𝑓2 + Δ𝐹 + Δ𝑓2     

   (13) 

Such that 

𝑓2 =

(𝑆𝑇(𝑞)𝑀(𝑞)𝑆(𝑞))
−1

𝑆𝑇(𝑞) (−𝑀(𝑞)�̇�(𝑞)𝑣 −

𝐵(�̇�))   (14) 

 

ΔF = (𝑆𝑇(𝑞)𝑀(𝑞)𝑆(𝑞))
−1

𝑆𝑇(𝑞)𝐹(�̈�) 

    (15) 

 

Δ𝑓2 = (𝑆𝑇(𝑞)𝑀(𝑞)𝑆(𝑞))
−1

𝑆𝑇(𝑞)𝜌(𝑞, 𝑞,̇ �̈�) 

    (16) 
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Once the system is put in its state space form, 

it can be used for the determination of the 

control law. Let 𝑇 = 𝑆𝑇𝐸𝜏, by introducing a 

new input variable u, T is chosen to be  

 

𝑇 = 𝑆𝑇(𝑞)𝑀(𝑞)𝑆(𝑞)(𝑢 − 𝑓2) −
𝑆𝑇(𝑞)�̂�(𝑠𝑟, 𝑠𝑎) − 𝑆𝑇(𝑞)𝜌(𝑞, 𝑞,̇ �̈�)        (17) 

 

In this study, the uncertain term 𝜌(𝑞, 𝑞,̇ �̈�) is 

considered to be negligible and the vector of 

the slipping forces �̂�(𝑠𝑟, 𝑠𝑎) is obtained from 

a fuzzy force estimator to compensate the term 

Δ𝐹, and whose implementation will be given in 

section 5. If we suppose that �̂�(𝑠𝑟, 𝑠𝑎) cancels 

the term Δ𝐹(�̈�) with some tolerable error, then 

the state equation given by equation (12) can 

be simplified to  

 

12x2

5 1 2x2

( ) [0]

[0] x

S q vq
x u

Iv
= = +

    
    

    
        (18) 

 

In a more compact form, we can write 

( ) ( )x f x g x u= +    

   (19) 

where 

5 1

( )
( )

[0] x

S q v
f x =

 
 
 

, 

12x2

2x2

[0]
( )g x

I
=
 
 
 

 

 

4. Non-singular finite time sliding mode 

control  

Sliding mode control is an interesting 

mathematical tool when it comes to design 

control laws that are robust against parameter 

variation and external disturbances for systems 

presenting nonlinear terms. The basic idea 

adopted in this work, is to move the system 

trajectories toward the sliding surface in a 

finite time and remaining on it. The control is 

achieved through non-singular terminal sliding 

mode [17, 18]. This technique has attracted 

many researchers and many theoretical 

approaches have been developed for different 

types of mathematical structures. It gives the 

required mathematical tools to many authors to 

contribute in obtaining solutions to many 

complex problems. For our purpose, we choose 

the reference point Pr that is located in the front 

of the WMR at a distance Lr from PG. Hence, 

the output vector is written as: 

( ) cos
( )

( ) sin

d G r

d G r

x q x L
y h x

y q y L





+
= = =

+

   
   
   

 

  (20) 

The time derivative of y yields 

( )( ) ( )
h h

y x f x g x u
x x

 
= = +
 

 (21) 

 

( ) ( )f gy L h x L h x u= +   (22) 

 

Since 𝐿gℎ(𝑥) = 0, we compute once more the 

Lie derivative of equation (21) in order to make 

the input control u appear in the equation, we 

obtain 

2
( ) ( )f g fy L h x L L h x u= +                  (23) 

 

Now, a robust control law u that guaranties a 

fast finite convergence is sought. This can be 

established using a non-singular terminal 

sliding mode control (NTSMC) such that  

−𝑢𝑚𝑎𝑥 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥. 

Let the sliding surface s be 

𝑠 = 𝑒 +
1

𝜆
|�̇�|𝑝/𝑞𝑠𝑖𝑔𝑛(�̇�)   

  (24) 

Such that: 

{
𝑒 = 𝑦 − 𝑦𝑑

�̇� = �̇� − �̇�𝑑
    (25) 
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The time derivative of the surface s is obtained 

as, 

�̇� = �̇� +
𝑝

𝜆𝑞
|�̇�|

𝑝

𝑞
−1

�̈�    

  (26) 

Choosing u such that 

𝑢 = −(𝐿𝑔𝐿𝑓ℎ(𝑥))
−1

(𝐿𝑓
2ℎ(𝑥) + 𝜆

𝑞

𝑝
|�̇�|

(2−
𝑝

𝑞
)

+

𝑘𝑠𝑖𝑔𝑛(𝑠) − �̈�𝑑) (27) 

u represents the NTSMC control law, and is 

feasible if determinant of ( )( ) 0g fL L h x  , and 

this is true since Lr  d. In this case  

�̇� = −𝑘
𝑝

𝜆𝑞
�̇�

𝑝

𝑞
−1

𝑠𝑖𝑔𝑛(𝑠)  (28) 

Where, k is a diagonal matrix with positive 

scalars and since p and q are positive odd 

integers and   1 <
𝑝

𝑞
< 2, there is �̇�𝑖

𝑝

𝑞
−1

 > 0 for 

�̇�𝑖 ≠ 0 [18], hence stability is ensured. To 

avoid the undesirable control chattering, the 

discontinuous sign function 𝑠𝑖𝑔𝑛(𝑠) is 

replaced by a continuous saturation function 

𝑠𝑎𝑡(𝑠, Φ). The control law in (27) is used to 

generate the torque vector in (17) in order to 

minimize the position error of the WMR with 

respect to the reference trajectory. However, 

equation (17) contains the term 

𝑆𝑇(𝑞)�̂�(𝑠𝑟, 𝑠𝑎), which includes longitudinal 

and lateral slipping forces. The forces that 

appear whenever the motion of the system is 

accompanied by a longitudinal and/or lateral 

displacement due to slip are usually 

unpredictable. 

 This can cause severe instability. In this work, 

we use fuzzy logic paradigm to estimate these 

forces to reduce their effect or in the ideal case 

eliminate them.  

 

5. Fuzzy logic based slip force estimation 

5.1 Problem formulation 

When the mobile robot wheels are in contact with 

the ground, the tyres deflect due to the pneumatic 

characteristics and the weight exerted by the robot 

mechanical structure. These result in forces 

generated in the contact patch between the tyre and 

the ground surface. Many attempts were made to 

give mathematical models to wheel-ground surface 

interaction. They can be classified into two major 

categories: empirical models and analytical models 

[29]. Empirical models are based on curve fitting 

techniques and can accurately capture the non-linear 

characteristics of traction forces, but most of these 

models lack physical interpretation and they cannot 

directly reflect the effect of some dynamic factors 

such as hysteresis and tyre pressure. On the other 

hand, analytical models are represented by 

differential equations that can model these dynamic 

factors but lacks the empirical accuracy. Maybe the 

Delft model notoriously named the "Magic 

Formula", which is a semi-empirical elegant model 

based on curve fitting technique, is the most 

appropriate model that has been widely accepted in 

industry and academic sector. It was introduced by 

Bakker, Nyborg & Pacejka in 1987 [30] and since 

then it has been revised several times [31-33]. It 

presents several advantages such as correctness, 

simplicity and the aptitude to be interpreted 

physically. In fact, this model allows obtaining a 

representation of the longitudinal and lateral forces 

as well as that of the self-aligning torque solely from 

the same equation and a set of six parameters. It 

should be noted that the slip ratio and the slip angle 

form the inputs of the formula whereas the other 

parameters (the vertical load, the camber angle, the 

tyre adhesion to the ground, the inflation pressure of 

the tyre) come into the determinations of the macro-

coefficients that govern the shape of the curve 

generated by the Magic Formula. The more general 

form of the magic formula for a given load and 

camber angle is as follows 

𝑦 = 𝐷𝑠𝑖𝑛 (𝐶𝑎𝑟𝑐𝑡𝑎𝑛(𝐵𝑥 − 𝐸(𝐵𝑥 − 𝑎𝑟𝑐𝑡𝑎𝑛𝐵𝑥)))

    (29) 

Such that 

𝑌(𝑋) = 𝑦(𝑥) +  Sv 

𝑥 = 𝑋 + 𝑆ℎ 

Sv and Sh introduce a vertical and horizontal offset 

respectively with respect to the origin. Y can 

represent the lateral force Flat or the longitudinal 
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force Flong and X can represent either the tyre drift 

angle δ or the rate of sliding when one seeks to 

obtain the lateral force or the longitudinal force 

respectively. The macro coefficients B, C, E and D 

are the four-macro dimensionless coefficients 

defined respectively as the stiffness, shape, 

curvature and peak. However, these macro 

coefficients depend on the nominal vertical load of 

the robot Fz on the tyre, and most importantly on the 

micro parameters, which depend on the soil surface 

on which the robot is rolling. Their estimation is 

important and must be accurate in order to predict 

the forces exerted by the tyres. In practical 

applications, it is usually difficult to determine these 

parameters chiefly when the nature of the surface 

changes. Fuzzy logic based approach as a universal 

approximate is used in this work to approximate the 

lateral as well as the longitudinal forces when the 

mobile robot is subjected to lateral or/and 

longitudinal slip. Its main advantage is the non-

requirement of detailed mathematical model to 

formulate the needed function, beside its capability 

to operate for a large range of inputs.  

 

5.2 Determination of lateral and longitudinal forces 

based on fuzzy rules 

When the pure rolling assumption is no more 

valid, the mobile robot is in face of a new situation 

where the traction force is relevant. In fact, slip is 

present whenever the mobile robot navigates with 

relatively high speed on slippery or irregular 

surfaces. In order to determine the lateral and 

longitudinal forces, fuzzy reasoning could easily 

find application in such systems. In this work, we 

assume that the right and left angular speeds �̇�𝑟 and 

�̇�𝑙 as well as the lateral speed of the center of each 

wheel �̇� can be measured. The slip is modeled as a 

slip ratio (sr) and a slip angle (sa) and satisfy the 

following relations, 

𝑠𝑟𝑖 =
𝑟�̇�𝑖−𝑣𝑖

𝑚𝑎𝑥(𝑟�̇�𝑖,𝑣𝑖)
, 𝑠𝑎 = 𝑡𝑎𝑛−1 (

�̇�

𝑣
)                (30) 

Where vi is the longitudinal speed of the center of 

the i-th wheel, v is the WMR forward speed, we 

suppose that the slips sri and sa are bounded by sR 

and sA such that  

sup || ( ) ||R
t

s sr t= , sup || ( ) ||A
t

s sa t=  

To get the required forces, the inputs of the fuzzifier 

are fed with values of the slip ratio and the slip 

angle. These variables are mapped from the crisp 

input domain to the fuzzy domain characterized by 

the six membership functions shown in Figures 2a 

and 2b. The fuzzy rule base consists of a sequence 

of linguistic sentences in the form of If-Then rules 

to infer a set of fuzzy outputs represented by five 

membership functions for the longitudinal and 

lateral forces as it is depicted in figures 3a and 3b 

successively.  

Tables 1 and 2 show appropriate sets of rules used 

for extracting the appropriate forces. The crisp 

values of these forces are obtained using the center-

of-gravity defuzzification technique. 

  

 

 
Fig 2a- Slip angle 

 

 
Fig 2b. Slip ratio 

 
Fig 2. Input variables of the fuzzy logic model 
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Fig 3a. Longitudinal force 

 
Fig 3b. Lateral force 

 
Fig 3. Output variables of the fuzzy logic model 

 

Table 1. Fuzzy rules for lateral force 

 Slip Angle () 

Slip Ratio 

() 
ZP VL L M H VH 

ZP VL L M VH VH VH 

VL VL L M H VH VH 

L VL L M H VH VH 

M VL L M H VH VH 

H VL L M H VH VH 

VH VL L M H H H 
 

 

Table 2. Fuzzy rules for longitudinal force 

 Slip Angle () 

Slip Ratio 

() 
ZP VL L M H H 

ZP L VL VL VL VL VL 

VL M M VH VL VL VL 

L VH VH VH H M M 

M VH VH VH H H M 

H VH VH VH H H M 

VH VH VH H H H L 

 

The design of the fuzzy rules is inspired 

from the resulting curves obtained from 

Pacejka formula (magic formula) given by 

equation (29) for different values of slip ratios 

and slip angles. The curves for a particular type 

of tyre are depicted in figures 4 and 5, obtained 

for a normal force Fz=1.0kN. The parameters 

associated with these curves are taken from the 

reference [34]. The determined forces obtained 

at the output of the module of deffuzification 

are scaled by a gain G found proportional to Fz.  

𝐺 = 0.01 ∗ 𝐹𝑧     

 (31) 

which varies with the weight of the mechanical 

structure of the mobile robot since Fz=mr*g. 

Hence, the estimated forces are the outputs of 

the fuzzy estimator multiplied by the gain G. 

𝐹 = 𝐺. �̂�     

 (32) 

 

Fig 4. Familly of Lateral force curves for  

different slip ratios 

 

 

Fig 5. Familly of Longitudinal force curves 

for different slip angles 

6. Simulation Results:  
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To validate the proposed approach, 

simulation tests are performed to confirm if the 

wheeled mobile robot succeed in keeping 

tracking two different types of paths, when part 

of their surface is made slippery. In each case, 

we compare the results obtained with and 

without slippery force compensation. For the 

simulation task, the WMR parameters (refer to 

Fig. 1) are as follows: Lr=0.36m; b=0.32m; 

d=0.737m; r=0.27m; mr=17kg; mw=0.8kg; 

Irz=0.537kgm2; Iwy=0.0023kgm2; 

Iwz=0.0011kgm2, the gains are G=1.7, k= [5  0; 

0  5]. 

a) Simulation for a straight line path 

following 

 

1) Without slippery forces compensation. 

 

 
Fig 6a.WMR x-y trajectory 

 
Fig 6b.WMR wheel torques 

 
Fig 6c.WMR orientation 

 

Fig 6d.WMR linear velocity 

 
Fig. 6e. WMR x-y configuration 

Figs 6. Simulation results for a straight line trajectory tracking without slippery forces 

compensation 
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Initially the mobile robot is at position 
(𝑥, 𝑦, 𝜑) = (0, 2, 𝜋/2) and is supposed to 

follow the straight line: x=t, y=t. To highlight 

slip phenomenon, slip forces are introduced in 

the dynamic model in the form of a scaled 

uniformly distributed pseudorandom numbers 

within the interval 4 to 6 sec.  

These forces result in an amount of 

longitudinal and lateral slip, impacting the 

robot behavior, which moves away from its 

reference trajectory. 

 It results in a bad control despite the 

robustness of the non-singular terminal sliding 

mode control, as it is clear from Fig. 6a. Figure 

6b depicts the control inputs u1 and u2.  

To show the details of the trajectory tracking, 

we successively reported in Fig. 6c and Fig. 6d 

the linear velocity plot and the evolution of the 

heading angle.  

Fig. 6c, shows the x and y plots with respect to 

the running time. 

 

 

 

 

2) With slippery forces compensation. 

As described in section 5, the objective is to 

stabilize the mobile robot to disturbances 

resulting from tyre slipping. In contrast to the 

first simulation, where the mobile robot 

deviates from its path when the slippery affects 

the mobile robot tyres, the proposed method 

allows the mobile robot to be invariant to these 

disturbances. To emphasize the importance of 

these forces compensation, the designed fuzzy 

estimator is activated to generate the required 

forces that reduce the effect of the tyre forces 

or eliminate them. Computer simulations are 

conducted in order to validate the proposed 

scheme. The mobile robot keeps tracking the 

desired path and seems not to be affected by 

tyre slips all along the path, as it is shown in 

Fig. 7a. In Fig. 7b, we report the curves of the 

actuator outputs 𝜏1 and  𝜏2 which are within 

selected limits 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥. The remaining 

figures, Figs. 7c, 7d and 7e, show the details of 

the trajectory tracking. 

 

 
Fig 7a.WMR x-y trajectory  

Fig 7b.WMR wheel torques 
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Fig 7c.WMR orientation  

Fig 7d.WMR linear velocity 

 
Fig. 7e. WMR x-y configuration 

 

Figs 7. Simulation results for a straight line trajectory tracking  

with slippery forces compensation 

 

 

b) Simulation for L- shaped path 

The second scenario consists of observing 

the behavior of the mobile robot when it is 

asked to follow an L-shaped path. As before, 

slip forces are introduced in the dynamic model 

in the form of a scaled uniformly distributed 

pseudorandom numbers within the interval 4 to 

6 sec. It corresponds to a slippery region 

around the sharp cornering. Initially the mobile 

robot is at position (𝑥, 𝑦, 𝜑) = (0, 0, 0). The 

simulation is replicated for the cases the tyre-

forces-estimator is whether activated or not.  

 

1) Without slippery forces compensation. 

The simulation carried out on the 

established model shows that the mobile robot 

fails in tracking the reference trajectory and 

deviates away, as it is clear from Fig. 8a. on the 

other hand, one can have an idea on the efforts 

developed by the torques by examining Fig. 8b. 

The remaining figures, Figs. 8c, 8d and 8e, 

show the degradation of the performances of 

the system. 
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Fig 8a.WMR x-y trajectory  

Fig 8b.WMR wheel torques 

 
Fig 8c.WMR orientation 

 
Fig 8d.WMR linear velocity 

² 

Fig. 8e. WMR x-y configuration 

 

Figs 8. Simulation results for a L-shaped trajectory tracking 

without slippery forces compensation 

 

 

2) With slippery forces compensation. 

When the fuzzy tyre force estimator is 

activated, the resulting torques, shown in Fig. 

9b, succeeded in stabilizing the mobile robot 

trajectory with negligible slip. The mobile 

robot is able to respond to the sharp cornering 

slipping surface as it is depicted in Fig. 9a. The 

remaining Figures, 9c, 9d and 9e show the 

details of the simulation. These curves show 

clearly the robustness of the approach in 

conserving the performances of the system in 
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rejecting the disturbances caused by the tyre 

slip forces. 

 

 
Fig 9a.WMR x-y trajectory 

 
Fig 9b.WMR wheel torques 

 
Fig 9c.WMR orientation 

 
Fig 9d.WMR linear velocity 

 
Fig. 9e. WMR x-y configuration 

 

Figs 9. Simulation results for a L-shaped trajectory tracking  

with slippery forces compensation 
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because of wheel slip of the mobile robot 

moving at high speed or on a slippery surface 

are compensated using a fuzzy logic based 

force estimator. It synthesizes the magic 

formula for a large model of tyres. Simulation 

results are presented to validate the presented 

approach. In this paper, we are not pretending 

that the proposed approach is better than the 

already existing methodologies. However 

compared with others e.g., [25], [27], we can 

affirm that it is simpler and avoids the 

complexity of the mathematical expressions 

used in determining the control laws. It gives 

on the other hand another issue compared to the 

techniques used to evaluate the parameters that 

fit the values of the magic formula. We believe 

that the proposed methodology can as well be 

applied to autonomous driving cars to 

overcome the problem of skidding and 

slipping. 
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