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 This paper focuses on the effects of closed- control on the calculation of the 
dynamic load carrying capacity (DLCC) for mobile-base flexible-link 
manipulators. In previously proposed methods in the literature of DLCC 
calculation in flexible robots, an open-loop control scheme is assumed, whereas in 
reality, robot control is achieved via closed loop approaches which could render 
the calculated DLCC value inaccurate. The aim of this research is to investigate 
the necessity of considering the effect of closed loop control in the calculation of 
the DLCC of mobile-based flexible link manipulators. Finite elements modeling 
and the Lagrange method have been used for modeling a mobile-base manipulator 
with two flexible links link. After that, a control scheme based on the feedback 
linearization method has been devised. A method for calculating the DLCC from a 
previously published study has then been utilized, with the difference that closed-
loop motion control has been assumed as opposed to open-loop control. Finally, 
three simulation case studies have been presented for which the results have been 
compared with those reported in a previously published study which ignores the 
closed-loop control effects. The comparisons show that the effect of closed-loop 
control on the DLCC needs to be taken into account. 

 
1- Introduction  

This study addresses consideration of closed-loop 
control effects on the calculation the dynamic load 
carrying capacity (DLCC) of mobile-base flexible-
link manipulators, using finite elements and Lagrange 
modeling and feedback linearization control 
approach. Mobile robot manipulators have 
increasingly been given attention during recent years 
due to their several advantages over their rigid 
counterparts; such as their improved maneuverability 
and their reduced power consumption. However, 
application of these types of robots involves dealing 
with a number of problems. Since mobile robots are 
usually “power-on-board” with limited power  

 
capacity, using light links and small actuators in 
order to reduce power consumption is desirable in 
designing these types of manipulators. As small 
actuators produce less torque than their heavier ones, 
the maximum load that can be carried by the 
manipulator will be constrained to a limit determined 
partially by the maximum available joint torques 
constraint. On the other hand, the flexibility of the 
links causes the end-effectors actual path to deviate 
from the desired path, and the amount of deviation at 
each point of the path depends on the amount of the 
load carried by the manipulator. Hence there are two 
constraints that must be taken into consideration in 
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finding DLCC of such manipulators, namely the 
actuators torque constraint, and the accuracy 
constraint. 
Several studies could be found in the literature about 
finding the DLCC of different types of manipulators. 
Calculating the DLCC has applications in the design 
stage of robots; for instance, in one study Thomas et 
al. [1] used the load carrying capacity as a criterion 
for choosing the actuators of robot manipulators. 
Wang and Ravani [2] addressed the problem of 
finding the DLCC of rigid robots for a prescribed 
trajectory by formulating the joint actuator constraint; 
they introduced the concept of load coefficient. 
Korayem and Basu [3, 4, 5] presented an algorithm 
for computing the DLCC of elastic manipulators.  
Yue et al. [6] considered the problem of computing 
the maximum payload of kinematically redundant 
manipulators by using finite-element modeling. 
Korayem and Ghariblu [7] presented an algorithm for 
finding the DLCC of rigid mobile manipulators. 
Korayem and Davarpanah [8] dealt with the problem 
of finding the DLCC of flexible-joint manipulators 
with feedback linearization control. The dynamic 
models of flexible-joint manipulators consist of 
equations that are much simpler than those of 
flexible-link manipulators. The problem of finding 
the DLCC of mobile-base flexible-link manipulators 
has been addressed by Korayem and Heidari [9] by 
using finite-elements and Lagrange dynamics 
modeling and with open loop control (i.e. using 
inverse dynamics equations). They presented an 
algorithm for finding the DLCC and presented 
simulation results of a case study of a planar flexible 
two-link manipulator mounted on a mobile base.  
Several studies on motion control of flexible arm 
robots could be found in this literature. Some of them 
have considered design of regulator-type controllers 
where the robot arm end-point is to be located in a 
desired position rather than to track a desired 
trajectory [10]. Rattan and Feliu applied feed-forward 
control to a flexible link robot and reported 
simulation results of the system step response, with 
the joint angle as the controlled output [11]. Geniele 
et al. [12] considered tip position control for 
regulating purposes. They used a linear controller and 
presented simulation results of the system step 
response.  
Several researches have focused on joint angle 
trajectory tracking of flexible link robot manipulators 
[13-15]. Yan, et al. [16] applied partial feedback 
linearization for tracking control of joint angles of a 
single flexible link robot. Loukinove et al. [17], 
proposed joint angle trajectory tracking control 
during the motion with an alternative control loop to 
suppress vibrations at the end of the motion. Wai and 
Lee [18] applied intelligent optimal control for joint 

angle tracking of a flexible link robot. The problem 
of controlling flexible-link manipulators poses 
different challenges to the designer of control 
strategy due to the vibratory nature of such systems; 
such systems have passive degrees-of–freedom and 
are therefore categorized among under-actuated 
systems, therefore full state feedback linearization 
can not be applied to them. Instead, partial feedback 
linearization method could be utilized for such 
systems, aiming to control joint angles while keeping 
the internal dynamics (i.e. vibrations of the links) 
stable. Although some research could be found in the 
literature that has addressed the problem of 
controlling the end effecter position of flexible link 
manipulators on a set point (i.e. regulator type 
controller design), in trajectory tracking motion 
control (i.e. servo control) the conventional control 
strategy is join angles control (rather than arm tip 
position control) which has also been used in the 
current research.  
Neither one of the studies in the literature have taken 
into consideration the effects closed loop control on 
calculating the DLCC of mobile-base flexible-link 
manipulators. Although a similar task has been done 
in [7] for flexible-joint manipulators, applying this 
approach for flexible-link manipulators brings about 
new problems that will be revealed in the simulation 
stage. This is because the highly nonlinear dynamic 
equation of these types of robots makes it hard to 
implement closed loop control. Furthermore, finding 
the DLCC without considering the effect of closed- 
loop control, as done in [6] and [9], has one major 
defect: robots used in industrial applications operate 
with closed-loop rather than open-loop control 
algorithms. Therefore the presence of a controller 
could alter the actual value of DLCC calculated with 
the assumption of open-loop case, as will be 
demonstrated in this article.    
In this paper a flexible two-links planar manipulator 
mounted on a mobile base has been presented, and a 
model based on finite element modeling and 
Lagrange dynamics has been used. Next, a control 
strategy using a feedback linearization technique has 
been set up for motion control of the manipulator on 
a given end-effector trajectory. A criterion for finding 
the dynamic load carrying capacity of the 
manipulator has then been presented, which is based 
on a previously published work [9], with the only 
difference that closed loop control has been assumed. 
After that, through computer simulation, the 
application of the presented method has been shown 
for a case study of a planar flexible two link 
manipulator mounted on a mobile base. Finally, two 
additional case studies have been presented with 
simulation parameter identical to those reported in [9] 
wherein DLCC was calculated assuming open-loop 
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control, and a comparison has been made in order to 
evaluate the effect of feed-back linearization control 
on the value of DLCC. 
 
2- Modelling of the flexible manipulator 
 
2-1- Model development 

Consider a planar two-link manipulator with links 1 
and 2 as depicted in Fig.1. This planar manipulator is 
in the horizontal plane and therefore the gravity 
vector is perpendicular to the plane of Fig.1. The 
model used here is two-dimensional, i.e. only 
deflection of the links in the plane of motion of the 
manipulators has been considered. Therefore, gravity 
has no effect on the deflection of the links of the 
robot model used here, and the deflections are caused 
only by the motion of the robot arms. The mobile 
base can move in the plane along x and y, and the 
distance of the base from the origin of the fixed 

coordinate system is shown with 0x  and 0y . 

Consider link 1 to be divided into elements 

’11’,’12’,…,’1j’,…’1 1n ’ of lengths all equal to 1l , 

and link 2 to be divided into elements 
‘21’,’22’,…,’2j’,…’2 2n ’ of lengths all equal 2l , 

(Fig. 1). 1n  and 2n  are the numbers of the 

elements of links 1 and 2, respectively. In the 
simulation study presented in this paper, one element 

is used for each link for simplicity, therefore 1n  and 

2n  are both equal to 1. Let us define the following 

notations (where subscript i refers to link i, and 
subscript ij refers to the jth element of link i): OXY is 

the fixed system of coordinates, iiii YOXO  is the 

body-fixed coordinate system attached to link i. 

11XO is the direction of the inflexed link 1. 22XO  

is the direction of the inflexed link 2. 12ju   is the 

flexural displacement at the common junction of the 
two elements ‘1(j-1)’ and ‘1j’ of link 1. 2ju  is the 

flexural slope at the tip of common junction of 
elements ‘1(j-1)’ and ‘1j’ of link 1. This slope is 

measured with respect to axis 11XO . 12jw   is the 

flexural displacement at the common junction of 

elements ‘2(j-1)’ and ‘2j’ of link 2, and  2jw  is the 

flexural slope at the common junction of elements 
‘2(j-1)’and ‘2j’ of link 2. This slope is measured with 

respect to axis 22 XO . 1θ and 2θ are the rotation 

angles of the first and the second joints, respectively. 
 

                 

 
Fig. 1: Schematic of the flexible link robot 

 
The model development approach is described in 
detail in [9], and the final form of the equations of the 
model is as follows: 

QfqM                                                     (1) 

Where )(qMM   is a 77  matrix and 

),( qqff   is a column vector of nonlinear 

functions of the generalized coordinates vector q , 

and its rate of change q . In this case, after applying 

boundary conditions, some of the generalized 
coordinates associated with link deflections will be 
constantly equal to zero, so that the generalized 
coordinates vector will be: 

T
4324310 ]wwθuuθx[q  . The 

first row of the vector Q in eq. (1) denotes the force 
F  applied to the base of the manipulator along its 
path, and the second and fifth rows contain the values 

of torques applied at joints, namely 1τ  and 2τ , and 

rest of the rows are zeros; i.e., 
 T21 00τ00τFQ .  The 

differential equation of the position of the end-
effector is: 

qJqJP                                                             (2) 

Where P , P  and P  are the vector of the position 
of the end-effector and its time derivatives 

respectively, and J  and J  are the Jacobian matrix 
and its time derivative respectively. 
2-2-Model adjustment for control-law deriving 
In order to utilize the model of the manipulator in 
deriving the control law, the model has to be changed 
into a more convenient form. Consider eq. (1), in 
which seven scalar differential equations are 
assembled into a matrix equation. The first scalar 
equation mentioned in the first row of the matrix eq.  
(1) describes the behavior of the manipulator base  

position 0x . In this study we only aim to control the 

 tip position trajectory and we assume that the 
manipulator base is forced to follow a predefined 
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path. The value of 0x  is thus a function of time and 

the first row of the matrix equation must be 
eliminated. By omitting the first row of all matrices 
in (1), the differential equation of the system will 
become: 

QfqM                                                 (3) 

where M   and f   are obtained by eliminating the 
first rows of M  and f , and 

 T21 00τ00τQ . Now, those 

terms of the equations containing 0x (the second 

time-derivative of 0x ) must be brought to the right 

side of the equation because 0x  will be replaced by 

a predefined function of time. Since 0x  is on the 

first row of q , the first column of M   is multiplied 

by 0x in eq. (3). We therefore separate the first 

column of M , name it 1M  , and multiply it by 0x . 

Then, eq. (3) changes into the following form: 
 

QfMqM  012 x                                     (4) 

Where  T432431 wwθuuθq , and 

2M   is obtained by eliminating the first column of 

M  . By multiplying both sides of the equation by 

  12M and defining )xMf()M( 01
1

2  F , eq. 

(4) becomes: 

QMFq  1
2 )(                                            (5) 

Since there are four zero rows in Q  , four of the 

columns of   12M  are multiplied by zeros in eq. 

(5); therefore by eliminating them, the equation 
describing the behavior of the generalized 
coordinates of the whole system will become: 
 

G τFq                                                          (6) 

Where ]ττ[ 21τ  and G  is a 26  matrix 

obtained by eliminating the four zero-columns of 
  12M  (namely the second, third, fifth and sixth 

columns). 
The system has six generalized coordinates, two of 

which correspond to the joint angles, namely 1θ  

and 2θ , and the other four variables denote 

deflections of the links, namely 3u , 4u , 3w  and 4w . 

For control law computation purposes, it is 
appropriate to separate these two groups of variables 
and their differential equations. Therefore, by 
selecting the first and fourth rows of (6), the 

differential equation of the joint angles could be 
represented separately as: 

τGFθ θθ                                                     (7) 

Where  T21 θθθ , while
θF  and 

θG  

are 22  square matrices comprised only of the first 
and fourth rows of G  and F , respectively. The 
differential equation of the rest of the generalized 
coordinates could be represented in a matrix form as 
follows: 

τGFq fff                                                     (8)          

Where the subscript ‘f’ refers to the flexural variables 

of the system and  T4343f wwuuq . 

  14f F  and   24f G  are obtained by omitting 

the first and fourth rows of G  and F , respectively. 
 
3-Joint-Angle Trajectory Tracking Control  
 
3-1-Control Scheme 

The feedback linearization control method has been 
utilized in this study to address the problem of end-
effector motion control of flexible link manipulators, 
which are categorized amongst under-actuated 
systems and therefore full state feedback linearization 
cannot be applied to them. Instead, partial feedback 
linearization (or input-output feedback linearization) 
is used to control joint angles. The problem of 
stability of the internal dynamics of the system 
(which, in this case, correspond to the vibrations of 
the links) has been addressed in section 3-2 and 
stability has been checked after simulation of the 
manipulator motion along the desired path. 
Simulations have been conducted via Simulink 
toolbox of Matlab software.  
The control scheme is based on deriving the desired 
joint angles trajectory from the desired end-effector 
trajectory (inverse kinematics). The joint angles are 
calculated in a fashion in which they would 
correspond to the end-effector desired path, 
neglecting links deflection. This means that, 
assuming link rigidity, tracking the obtained 
trajectory for join angles would result in tracking the 
desired end-effector trajectory; obviously, this is not 
the case here because the deflections of the links will 
cause the end effector position to deviate from its 
desired position at each point of the path. The amount 
of this deviation, which must not exceed the 
allowable limits, depends on the amount of the load 
carried by the end-effector and is one of the two 
criteria by which the DLCC is calculated. 
Considering eq. (7), the following control law leads 
to asymptotic tracking of the desired joint angles 
trajectory: 
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][ θ
1

θ v  FGτ                                              (9) 

Where T
2d1dd ]θ[θθ  is the desired joint angle 

vector as a function of time, d
~

θθθ   is the 

tracking error vector and v is the new input of the 
system defined by: 

θθθ
~

λ
~

λ 21d  v                                             (10) 

 The torques calculated in (9) should be applied to the 
manipulator, as demonstrated in the block diagram in 
Fig. 2. Applying the control law of eq. (10) leads to a 
linear relationship between the system outputs and 

the new input v, i.e. vθ .  It could be seen by 
comparing eq. (7), (9) and (10) that the above-
mentioned control law will cause the dynamic 
equation of the joint angles to become: 
 

0θθθ 
~

λ
~

λ
~

21


                                             (11) 

This is a linear differential equation in which proper 

choice of 1λ  and 2λ  will lead to the asymptotic 

convergence of the tracking error to zero. This is a 
problem of placing the poles of the linearized closed-
loop system, which must be located on the left hand 
side of the vertical axis in the complex number plane. 
Here, the optimum locations of the closed loop poles 
were chosen by trial and error, and the corresponding 

values of 1λ  and 2λ  are 1.1 and 0.1, respectively. 

 
3-2-Stability of the Closed-Loop System 

The stability problem of flexible-link manipulators 
with joint-motion control has been addressed in 
published researches [13, 20, and 22]. Feedback 
linearization control, with the choice of joint angles 
as the controlled output of the system, has been 
shown to be efficient in maintaining stability. In 
order to explain the stability analysis, let us consider 
the system dynamic equations (7) and (8) again. Eq. 
(7) describes the input-output behavior of the system, 
while it does not show another part of the system 
dynamics (namely the internal dynamics), which is 
described in eq. (8). The control law of eq. (9) causes 
the behavior of the system output to follow the linear 
differential equation of (10), provided that the 
internal dynamics are stable; otherwise the control 
approach is impractical since the internal instability 
(i.e. boundlessly increasing vibrations of the links) 
will render the entire system unstable. The internal 
dynamics of the system is coupled with the 
observable output dynamics of the system and 
internal stability analysis can be carried out by 
studying the so-called zero dynamics of the system. 
Zero dynamics equations of the system are obtained 

by constraining the output θ  of the system to be kept 
constantly equal to zero using appropriate inputs. It 
has been shown in [21] that the stability of the zero 
dynamics together with the use of a control law like 
that of eq. (9) will lead to stability of the entire 
system in regulating control (where the control 
objective is to keep the output constantly zero), 
provided that the linear equation of the output (eq. 

11) is stable (i.e. the constants  1λ  and 2λ  are 

chosen so that the roots of the characteristic equation 
are on the left hand side of the vertical axis in the 
complex number plane). It has also been shown that 
in joint-motion tracking control of flexible link 
manipulators, the zero dynamics are stable [20]. 
 In the case of tracking control (where the outputs are 
supposed to follow a desired path), the analysis is 
slightly different as follows. Keeping in mind that the 
internal dynamics described by eq. (8) is dependent 
on the behavior of the input-output dynamics of eq. 
(7), we need to convert the internal dynamics in eq. 
(8) into a form in which the input τ  is not explicitly 
mentioned [21]. Therefore, by substituting eq. (9) 
into eq. (8), the following equation of internal 
dynamics during the joint-angle motion control is 
obtained: 

])
~

λ
~

λ[ 21dθ
1

θfff θθθF(GGFq        (12) 

 
Provided that the answer of eq. (12) exists, is limited 
and is stable, the whole system is stable and the 
control law of (9) will lead to asymptotic tracking of 
the desired outputs [21]. Furthermore, as long as all 
time varying functions of the internal dynamics of eq. 
(12) are bounded (which is the case in the numerical 
examples used in this paper), stability is ensured, 
even during trajectory tracking [20]. Diagrams of the 
flexural variables of the system during output 
trajectory tracking have been included in this paper in 
order to confirm the stability of the internal dynamics 
and to assure that the link vibrations have remained 
bounded throughout the motion.  
It should be noted that although the abovementioned 
stability analysis does not explicitly involve the 
Cartesian coordinates of the end-effector position, it 
still implies the stability of the end-effector position. 
This could be seen by considering that the values of 
the end-effector coordinates are determined by the 
joint angles as well as the flexural variables (i.e. 

343 w,u,u  and 4w ). On the other hand, stability 

of the internal dynamics means that the flexural 
variables remain limited and stable. Therefore, while 
the joint angles trace their desired values and as long 
as the internal dynamics are stable, the end-effector 
position coordinates also remain limited and stable.     
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Fig. 2: Block diagram of the control scheme. Note 

that joint angles vector (θ ) is controlled. 
 
4- Formulation of the Dynamic Load Carrying 
Capacity (DLCC) for a Predefined Trajectory 

The DLCC calculation method presented here is 
similar to the one proposed in [9]. The only 
difference is that between the DLCC formulation in 
this study and the one reported in [9] is that the 
closed loop control has been taken into consideration 
in the current study.  
The DLCC of a flexible link mobile manipulator for a 
given trajectory is defined as the maximum load that 
the manipulator can carry along the desired trajectory 
with acceptable precision. In the case of flexible-link 
manipulators, link flexibilities can cause deviation of 
the end-effector trajectory from its desired one. 
Therefore, a constraint on the end-effector deflection 
must be imposed, as well as one on the motor 
torques. 
 
 
4-1- Formulation of the accuracy constraint 

As illustrated in [9], the method for formulating the 
accuracy constraint is based on discretising the 
trajectory into separate points. Performing 

simulations, no-load deflection jn )(Def  and 

deflection with added end effector mass je )(Def  

are computed for each point of the digitized 
trajectory. As depicted in Fig. 3, both the magnitude 
and the direction of the deflection change by adding 
the end-effector mass. But as long as the magnitude 
of the deflection is not greater than the maximum 
allowable value, the robot is considered to remain 

capable of executing the given trajectory. Therefore 
only the magnitude of the deflection needs to be 
considered. Hence, a series of spherical boundaries 

with radii equal to pR  (maximum allowable 

deviation) and centered at points on the digitized 
desired trajectory have been introduced, as shown in 
Fig. 3. Although the no-load deflection ( nlDef ) and 

the deflection due to the end effector load ( eDef ) are 

generally vectors of different directions, the increase 
of the deflection magnitude due to the added mass at 
the end effector is linearly related to the mass [5 and 
19].  
The difference between the magnitudes of the 
allowable deflection and the deflection due to the 
added end-effector mass will be: 

jep )(DefR                                                  (11) 

This can be regarded as the remaining allowable end-
effector deflection at point j of the given trajectory. 
This remaining amount can express the amount of 
additional load that can be carried along the desired 
trajectory without violating the maximum allowable 
deviation of the end-effector position. Therefore, a 
load coefficient jp )(C  can be introduced for point j 

of the discritised trajectory, j=1,2,…,m as : 

]max[Def]max[Def

)(DefR
)(C

nle

jep
jp 


      (12) 

Where 

})(Def,...,)(Def,)max{(Def}max{Def

})(Def,...,)(Def,)max{(Def}max{Def

mnl2nl1nlnl

me2e1ee


   (13) 

     

 
Fig. 3: Spherical boundary of the end effector deflection 

 
 

4-2. Formulation of the actuator torque constraint 
The formulation of the actuator torque constraint 

for rigid manipulators could be found in [8]. The 
same approach could be used for flexible 
manipulators as well, as in [6]. In order to formulize 
the actuator torque constraint, knowledge of the 
maximum allowable torques of the motors is needed; 
therefore, typical torque-speed curves of DC motors 

dθ


dθ
+ 

  _ 
θ

θ

dθ
+ 

_ 

θ
~

θ
~

1λ

2λ

+ 

_ 

_ 

+ 

θ)(G
τ Robot 

Model 

,q(θF

q,q 

θθ ,

v 
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have been used [5] here. Considering s1 Tk   and 

nls2 /ωTk   where sT  is the stall torque and 

nlω  is the maximum no-load speed of the motor, 

the upper and lower bounds of the allowable motor 

torques, U and U , could be found using the 
following relation: 

qkkU

qkkU

21

21












                                       (14) 

Similar to the process of calculating the accuracy 
constraint, here we need to run the simulation twice; 
once without any load (also excluding the end 
effector) and once with the end effector load, as 
described in [8]. By performing computer simulation, 
the torque at joint i for the no-load case )(τnl  and the 

torque due to the end effector load )(τe  are 

calculated according to the control law for the motion 
of the manipulator which can be obtained for each 
point of the discretised trajectory. Note that for the 
case that the end effector load has been taken into 

account, the total torque applied is equal to enl ττ  . 

The available torque for carrying the load will be: 

inlieii

inlieii

)(τ)(τ)(Uτ

)(τ)(τ)(Uτ








              (15) 

and the maximum allowable torque at the ith joint 
will be equal to: 

}τ,max{τ)(τ iiia
                                       (16) 

Now a load coefficient could be defined to represent 
the actuator torque constraint, as follows: 

}n,...,2,1i,)τ/τ(min{)(C ieaja            (17) 

Where the subscript 'i' denotes the i’th joint, and “n” 
is the number of the joints. The load 
coefficient ja )(C , from a physical point of view, 

describes the accessible load for carrying the 
maximum load divided by the load applied for 
carrying the initial load. Finally, the load coefficient 
C can be obtained as follows: 

m1,2,...,j})(C,)min{(CC jajp            (18) 

where “m” is the number of the points of the 
discretised trajectory. The maximum load loadm  that 

can be carried on the trajectory without violating 
either of the two constraints will be: 

eload mCm                                                     (19) 

where em  is the mass of the end effector.  

 

5-Simulation Results and Discussion 

The simulation results for three case studies of 
flexible-link mobile-base manipulators are presented 
here. The first case study is presented for a thorough 
description of the approach, and all of the necessary 
diagrams have been shown. The second and third 
case studies are presented in order to compare the 
results with a previously published work [9], and 
therefore only the diagrams that were necessary for 
the purpose of comparison have been shown for those 
two cases.    
 
5-1- First Case Study: A Complete Demonstration 
of the Procedure 

The characteristics of the manipulator used in the 
simulation of the first case study are presented in 
Table 1.  

 
TABLE 1. Parameters Used in the First Simulation 

Unit Value Parameter 

m  2.121  LL
  

Length of the 
links 

4m      

8e5.5II 21   

Moment of Inertia 

Kg/m   

8.0mm 21 
  

Mass per Length  

2/ mN      

110.221 eEE   

Modulus of 
Elasticity 

..mN  160 
1k  

rasmN /..
 

10 
2k  

 
Simulations were performed two times, first for the 
manipulator without load and then for an initial load 
of 0.5 kg. The maximum allowable deflection of the 
end-effector was considered to be 0.03 m. The results 
of the simulation of the manipulator motion with the 
initial load have been depicted in Fig. 4 to 10. Fig. 4 
shows the desired and the actual path of the end-
effector with the initial load. In Fig. 5 and 6 show the 
first and the second actuator torques with their upper 
and lower limits. Figs. 7 to 10 show that the flexural 
variables of the system have been kept limited to 
small values, which confirms the internal stability of 
the closed loop system. The base of the manipulator 
travels on the OX axis as in Fig. 1, and its distance 
from the origin O is defined by: 

345
0 t625.0t4687.0t0937.0)t(x    

The desired path of the end-effector was chosen to 
be: 
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 







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


)2/πtπ4(Sin15.015.0

84.1)t(x
)t( 0

dy   
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Fig. 4: Desired and actual path of the end effector with initial 

load 
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Fig. 5:  Torque of the first joint actuator, without load 

and with the initial load, and its upper and lower boundaries 
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Fig. 6:  Torque of the second joint actuator, without load and 

with the initial load, and its upper and lower boundaries 
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Fig. 7:  Deflection of the tip point of the first link, 3u   
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Fig. 8:  Flexural slop at the tip point of the first link, 4u  
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Fig. 9:  Deflection of the tip point of the second link, 3w  
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Fig. 10:  Flexural slop at the tip point of the second link, 4w  

 
The DLCC of the manipulator calculated by 

equation (19) was found to be 1.37 kg. Two 
constraints, namely the accuracy and the motor 
torques constraints were considered for finding the 
DLCC, which in this case the motor torques 
constraint was the dominating constraint; i.e., the 
manipulator would be capable of carrying a heavier 
load without violating the accuracy constraint if the 
motors could produce more torque. In order to verify 
the reliability of the DLCC calculation method, a test 
was performed in which the motion of the 
manipulator with the computed maximum load was 
simulated. It was expected that the manipulator 
would be able to carry the load without violating the 
accuracy constraint and that at least one of the motors 
torques would reach its maximum available bound, 
since the motor torque constraint determined the 

DLCC. This could be seen in Fig.11 to 13. Fig.11 
shows the desired and the actual path of the end 
effector while carrying the maximum load. Fig.12 
shows the deviation of the end effector from the 
desired path throughout the motion of the 
manipulator, which is clearly far from exceeding the 
maximum allowable value (0.03 m). Fig.13 shows 
that the first joint torque has reached its maximum 
allowable value near the point t=0.5 sec.  The torque 
of the second joint is also shown in Fig.14; a 
comparison between Fig.13 and 14 shows that the 
saturation of the first joint actuator (rather than the 
second one) torque is the dominant constraint which 
determines the maximum load that the manipulator 
can carry. 
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 Fig.11: Desired and actual path of the end effector with 

maximum load 
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Fig.12: deviation of the end effector from the desired path 

while carrying the maximum load 
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Fig.13:  Torque of the first joint actuator, without load and 

with the maximum load, and its upper and lower boundaries 
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Fig.14:  Torque of the second joint actuator, without load and 
with the maximum load, and its upper and lower boundaries 

 
5-2- Second Case Study: Comparison with a 
previously published study 

In the second case study, the problem parameters 
have been chosen to be identical to those reported in 
[9], in which the DLCC of a flexible-link mobile-
base manipulator is calculated without assuming 
closed-loop control (i.e. using inverse dynamics 
approach). Results of the simulation have been 
brought here to be compared to those reported in [9] 
in order to see the effect of feedback linearization 
control on the value of the DLCC. The parameters 
used in the simulation are given in Table 2.  The path 
of the end-effector and its load is a strait line, starting 
from point { mymx 2,0 11  } and ending at 

point { mymx 38.2,76.0 11  }, as depicted 

in Fig.15. 
 
                          

 
 Fig.15: Schematic of the robot and the end-effector path in the 

second case study 
 
The desired velocity profile of the end effector along 
its path is as follows: 













TtTatvv

TtTvv

Ttatv

4/3

4/34/

4/0

max

max            

                                                                 
 where T=3.25 sec. The permissible error bound for 
the end-effector position around each point on the 
desired path is limited to R=0.03 m. A linear path is 
planned for the vehicle, which starts from the origin 
and ends at the point ( mymx bb 2.0,76.0 12  ), 

with the velocity of taV bb  . The procedure of 

calculating the DLCC is the same as the previous 
case. Fig.16 shows the desired and the actual path of 
the end-effector. Figs.17 and 18 show the torques of 
the actuators with and without the initial load and 
Figure19 shows the diagram of DLCC for the given 
path against time, with a minimum of 0.25 kg.  
The path of the manipulator while carrying the 
maximum load, (which is equal to 0.25 kg) is shown 
in Fig. 20. It could be seen that the accuracy bound is 
far from being violated in this case. Fig. 21 shows the 
torque of the first joint actuator, and it can be seen 
that at the end of the motion, the torque of the second 
actuator has taken its maximum allowable value.  
The DLCC value calculated here shows no increase 
in comparison to that reported in [9] where open loop 
control has been assumed. This could be explained by 
the following analysis: 
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 In this case study, the constraint that determines 
the DLCC is the actuator torques constraint rather 
than the accuracy constraint, in other words, the 
accuracy of tracking the desired end-effector position 
is unimportant here. On the other hand, although 
closed loop control increase tracking accuracy, it 
does not necessarily decrease the control effort (and 
in this case, it has not). It should also be noted that 
the value of the DLCC calculated here was not 
neither reduced compared to the open loop case. This 
could be explained by considering that a closed-loop 
control scheme does not necessarily lead to greater 
actuator torques compared to the open-loop case, but 
rather more precisely calculated torques. Therefore, 
in cases where actuator torque limitation is the 
dominating constraint, calculating the DLCC yields 
the same result whether or not closed loop control has 
been considered. 
The sudden jump in the DLCC diagram in Fig.19 
could be explained this way: as mentioned earlier, 
through most of the motion period, the actuator 
torques constraint is stricter than the accuracy 
constraint i.e. 

pa CC   for most of the motion 

period. But approximately at sec6.0t  , the no-load 

torque )(τnl  and the torque with end effector load 

( enl ττ  ) at the first joint have equal values, as 

could be seen in Fig.17. This means that at this 
moment 0τe   for the first joint. By considering eq. 

(17) it is found that at this moment,  aC  of the first 

joint approaches infinity and its value will be 
increasing rapidly before this moment. Thus, the load 
coefficient (which is defined as the minimum of  pC  

and aC  of the two joints) will increase at this time 

until the aC  of the first joint becomes greater than 

aC  of the second joint, or greater than pC . After a 

short time, as could be seen in Fig.17, the difference 
between the no-load torque )(τnl  and the torque 

with end effector load (which is equal to
enl ττ  ) at 

the first joint becomes noticeable, causing aC to 

become small again. 
 

TABLE 2.  Parameters used in the second simulation 
Parameter Value Unit 

Length of links 414.121  LL  m 
Moment of inertia 45.521  eII  Kg.m2  

Mass  5.0,7.0 21  mm  Kg 
Spring Constant 10,15 21  KK  N.m 

Actuator stall 
torque 

25,18
21
 sS KK  N.m.s/rad 
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     Fig.16: Path of the end-effector with the initial load 
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Fig.17: Torque of the first joint actuator with and without the 
initial load. 
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Fig.18: Torque of the second joint actuator with and without 
the initial load 
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Fig.19: Dynamic Load Carrying Capacity 
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Fig. 20: Path of the end-effector with the maximum allowable 

load 
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Fig. 21: Torque of the first joint actuator while carrying the 

maximum allowable load 
 
 
 

5-3- Third Case Study: Comparison with a 
previously published study 

The case study considered in [9] has been re-
examined, and a comparison of the results is 
presented here. Schematic of the manipulator and the 
end-effector path is shown in Fig. 22, and the 
parameters used in the simulation are given in Table 
(3). The base moves horizontally with a velocity 
of tVb 5.0 . The trajectory of the load is a circular 

path with its center located at 

{ mymx cc 1,1  } and a radius of cmr 50 . 

The motion starts from the lower point of the arc 
(Fig. 26) and circulates around the center of the arc in 
a clockwise direction. The maximum allowable error-
bound at each point of the desired path is restricted to 
a sphere centered on the desired path with a radius of 
5 cm. 
 

TABLE. 3: Parameters Used in the Second Simulation 
Parameter Value Unit 

Length of links 2.121  LL  m 

Moment of 
inertia 

45.521  eII  Kg.m2  

Mass  8.0,8.0 21  mm  Kg 

Spring Constant 12,17 21  KK N.m 

Actuator stall 
torque 

30,12
21
 sS KK  N.m.s/rad 

 

 
 

Fig. 22: Schematic view of the flexible link manipulator of the 
third case study 
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Fig. 23: Dynamic Load Carrying Capacity in the third case 

study 
 

The DLCC in this case is shown in Fig. 23 with a 
minimum of 0.77 kg. The sudden jumps in the DLCC 
diagram could be explained in a similar way as in the 
first case study, with the difference that in this case 
the sudden increases in the precision  load coefficient 

pC   (rather than the actuator torques coefficient) 

causes the jumps. That is, at two moments during the 
motion of the manipulator, namely approximately 

sec45.0t   and sec4.1t  , the deflection of the end 
effector from the desired path is zero. This will cause 

an increase in the load coefficient pC  (the dominant 

coefficient in this case), as could be seen by 
considering eq. (12). 
  Joint angles are depicted in Fig. 24 and 25. The 
dominating constraint in this case is the accuracy 
constraint, as could be seen in Fig. 26 which shows 
that the end effector position deviation from the 
desired path reaches the maximum allowable value at 
one point during the motion. Comparison with [9] 
shows that the calculated DLCC has been increased 
by 43 percent as a result of considering closed loop 
control. This could be explained by considering the 
fact that it is the accuracy constraint that determines 
the DLCC in this case. Therefore, by using closed-
loop control, the position of the end-effector could be 
controlled more precisely and therefore heavier loads 
(as compared to the open loop case) could be carried 
without violating the accuracy constraint. 
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Fig. 24: Angle of the first joint during the motion of the 

manipulator  
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Fig. 25: Angle of the second joint during the motion of the 

manipul 
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Fig. 26: Desired and actual path of the end-effector for the 

third case study  
 
 



International Journal of Robotics, Vol.3, No.1, (2013)/ M. H. Korayem, S. Firouzy 
 

47 

6- Discussion of the results and conclusion 
A comparison between this case study and the 

second case study shows a pattern, as follows:   
 In the second case study where the 

dominating constraint was the torque 
constraint, considering the effects of closed 
loop control did not affect the calculated 
value for DLCC.   

 In the third case study where the dominating 
constraint was the accuracy constraint, it has 
been revealed that neglecting closed-loop 
control effects (i.e. improved accuracy 
compared to open loop case) leads to 
underestimation of the DLCC. Therefore, 
since closed-loop control is implemented in 
robotic applications, the DLCC calculated 
for the third case study here is more realistic 
than the one reported in [9].  

The modeling and simulation process involved in 
DLCC calculation does not become much more 
complicated as a result of considering closed loop 
control. Therefore, in a general case, it could be 
concluded that closed loop control should be 
considered in the calculation of the DLCC of mobile-
base flexible-link manipulators. On the other hand, in 
cases where the torque constraint is more restricting 
than the accuracy constraint, the DLCC value 
calculated with the assumption of open loop control 
is still reliable.   

   

REFERENCES 

[1] Thomas M, Yuan-Chou HC, Tesar D., 
“Optimal Actuator Sizing for Robotic 
Manipulators Based on Local Dynamic 
Criteria” J. of Mechanisms Transmission 
Automation in Design, Vol.107, 1985, pp. 163–
169. 

[2] Wang LT, Ravani B (1988) “Dynamic load 
carrying capacity of mechanical manipulators”, 
Part I, problem formulation. J Dyn Syst Meas 
Control 110:46–52. 

[3] Korayem M. H., Basu A. “Formulation and 
Numerical Solution of Elastic Robot Dynamic 
Motion with Maximum Load Carrying 
Capacity” Robotica, Vol.12, 1994, pp. 253–
261. 

[4] M. H. Korayem, A. Basu, “Mathematical 
Modeling and Simulation of Differentially 
Wheeled Mobile Robots Dynamic Equations,” 
Int. Journal of Applied Science and 
Computations, Vol. 10, 2003, PP. 30-37. 

[5] M. H. Korayem, A. Basu, “Dynamic load 
carrying capacity of robotic manipulators with 
joint elasticity imposing accuracy constraints”, 

Robotics and Autonomous Systems 13 (1994) 
219-229. 

[6] Yue S., Tso S. K., Xu W. L., “Maximum 
Dynamic Payload Trajectory for Flexible Robot 
Manipulators with Kinematic Redundancy” 
Mechanism and Machine theory, Vol. 36, 2001, 
PP. 785-800. 

[7] Korayem M. H., Ghariblu H., “Maximum 
Allowable Load on Wheeled Mobile 
Manipulators Imposing Redundancy 
Constraints” J. of Robotic and Autonomous 
Systems, Vol.44, No.2, 2003, PP. 151–159. 

[8] M. H. Korayem, F. Davarpanah, H.Ghariblu, 
“Load carrying Capacity of Flexible-Joint 
Manipulators with Feedback Linearization”, 
International Journal of Advanced 
Manufacturing Technology, Vol. 29, No. 3 and 
4, 2006. 

[9] M. H. Korayem, A. Heidari, A. Nikoobin, 
“Maximum Dynamic Allowable Load of 
Flexible Mobile Manipulators Using Finite 
Element Approach”, International Journal of 
Advanced Manufacturing Technology, Vol. 36, 
No.5-6, 2008, PP. 606-617. 

[10] Swee P. Goh, Andrew R. Plummer and 
Michael D. Brown,” Digital Control of a 
Flexible Manipulator”, Proceedings of the 
American Control Conference, Chicago, 
Illinois, June 2000. 

[11] Kuldip S. Rattan and vincente Feliu, 
“Feedforward Control of Flexible 
Manipulators”, Proceedings of the 1992 IEEE, 
International Conference On  Robotics and 
Automation, Nice, France-May 1992. 

[12] H. Geniele, R. V. Patel, Fellow, IEEE, and K. 
Khorasani, “End-point Control of a Flexible –
link manipulator: theory and Experiments”, 
IEEE Transactions on Control Systems 
Technology, Vol. 5, No. 6, November 1997. 

[13] Alessandro De Luca, Stefano Panzieri, 
Giovanni Ulivi, “Stable Inversion Control for 
Flexible Link Manipulators”, Proceedings of 
the IEEE, International Conference on Robotics 
and Automation, Leuven, Belgium, May 1998. 

[14] Xu Bo, Kenji Fujimoto, Yoshikazu Hayakawa, 
“Control of  Two Link Flexible Manipulators 
via Generalized Canonical Transformation”, 
Proceedings of the 2004 IEEE, International 
Conference on Robotics , Automation and 
Mechatronics, Singapore,1-3 December, 2004. 

[15] Yuchen Zhou, “Tracking Control of Multiple 
Flexible Link Robots”, Proceedings of the 1993 
IEEE/RSJ International Conference on 
Intelligent Robots and Systems, Yokohama, 
Japan July 26-30, 1993. 



International Journal of Robotics, Vol.3, No.1, (2013)/ M. H. Korayem, S. Firouzy 
 

48 

[16] Liu Yan, Gao Yanmei, Wang Dalong, Lu 
Youfang, Liu Yu, “Variable Structure 
Controller Design of a Two-Link Rigid-
Flexible Robotic  Manipulator”, 1997  IEEE 
International Conference on Intelligent 
Processing Systems, October 28-31, Beijing, 
China. 

[17] A. A.  Loukianov, Y.Q. Dai, M. Uchiama, 
“Trajectory Tracking of Spatial Flexible Link 
Manipulators Using Inverse Kinematics 
Solution and Vibration Suppression”, ICAR 
’97, Monterey, CA, July 7-9, 1997. 

[18] Rong-Jong Wai, Member, IEEE,  and Meng-
Chang Lee, “Intelligent Optimal Control of 
Single-Link Flexible Robot Arm”, IEEE 
Transactions of Industrial Electronics, Vol. 51, 
No, 1, February 2004. 

[19] D. A. Fresonke, E. Hernandez and D. Tesar, 
“Deflection prediction for serial manipulators”, 
Proc. IEEE Int. Conf. Robotics and Automation 
(1988) 482-487. 

[20] Alessandro De Luca, Bruno Siciliano, 
“Inversion-Based Nonlinear Control of Robot 
Arms with Flexible Links”, AIAA J. of 
Guidance, Control, and Dynamics, vol. 16, pp. 
1169--1176, 1993. 

[21] Jean-Jacques E. Slotine, Weiping Li, “Applied 
Nonlinear Control”, Prentice Hall, 1991. 

[22] Wang Dalong, Lu Youfang, Liu Yan,* Li 
Xiaoguang, “Dynamic Model and Tip 
Trajectory Tracking Control for a Two-Link 
Flexible Robotic Manipulator”, IEEE 
International Conference on Systems, Man, and 
Cybernetics, 1996.  

[23] Arisoy, A.; Gokasan, M.; Bogosyan, O, “Partial 
Feedback Linearization Control of a Single 
Flexible Link Robot Manipulator”, proceedings 
of 2nd International Conference on Recent 
Advances in Space Technologies, 2005. RAST 
2005. 


