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The large amount of computation necessary for obtaining time optimal solution 
for moving a manipulator on specified path has made it impossible to introduce an 
on line time optimal control algorithm. Most of this computational burden is due 
to calculation of switching points. In this paper a learning algorithm is proposed 
for finding the switching points. The method, which can be used for both serial 
and parallel manipulators, is based on a two-switch algorithm with three segments 
of moving with maximum acceleration, constant velocity and maximum decelera-
tion along the path. The learning algorithm is aimed at decreasing the length of 
constant velocity segment in each step of learning process. The algorithm is ap-
plied to find the near minimum time solution of a parallel manipulator along a 
specified path. The results prove versatility of the algorithm both in tracking accu-
racy and short training process.

 

 
1. Introduction 
Time optimal solution has always been an interesting 
subject among researches working on path planning and 
control of manipulators. 

Figure 1. schematic diagram of the manipulator 

The minimum time problem of tracking specified path 
by a serial manipulator was extensively studied by 
many researchers. Bobrow et al. [1] proposed a  

 

method for time optimal motion of serial manipulators 
based on phase plane analysis. Considering that the 
solution is bang-bang in terms of acceleration along the 
path, the method reduces the problem into calculating 
the maximum and minimum acceleration along the 
trajectory in each step, and to find the switching points. 
They used a geometric approach in the phase plane and 
suggested a shooting method for finding switching 
points, in which one has to find a solution trajectory 
which comes in contact with the boundary of non-
feasible region (NFR) without crossing it, where NFR 
is part of phase plane in which no solution that keeps 
end effector on prescribed trajectory is feasible. This 
procedure is numerically very difficult and expensive 
task to do. 
Their method was further developed by Pfeiffer and 
Johanni [2]. Taking advantage of characteristics of the 
boundary of Non-Feasible Region, they presented a 
method for direct calculation of this boundary and find-
ing the switching points on it for serial manipulators. 
They stated that switching points might occur on the 
boundary of NFR at critical points, where the slope of 
non-feasible region boundary minus the value of ss   
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changes signs. This advancement considerably reduced 
the numerical effort. 
Zlajpah [3] introduced the concept of trapped area from 
which no solution trajectory can escape without leaving 
the prescribed trajectory, and locked area to which no 
solution trajectory can enter from within feasible area.  
Timar et al.  [4] applied such methods to determine 
time-optimal solution for a CNC machine subject to 
prescribe acceleration bounds along axis. Sadigh and 
Hassan Ghasemi [5] showed that the lower boundary of 
these trapped and locked areas constructs the switching 
curve. The switching curve is a solution trajectory it-
self, and could be generated by direct integration of 
equations of motion, provided that either the first 
switch or one of the critical points on it is known.  
The problem of minimum time motion along specified 
path for cooperative manipulators was also studied by 
several researchers. McCarthy and Bobrow [6] proved 
that for a manipulator with n coordinate, p differential 
constraint equations and m actuators, at least m-n+p+1 
actuators are saturated during a time optimal movement 
along a prescribed path. Taking advantage of this result, 
Sadigh and Hasan Ghasemi [5] proposed a direct 
method for calculation of maximum and minimum 
acceleration for CMMS. Moon and Ahmad [7] em-
ployed a similar algorithm as Bobrow et al. to find the 
time-optimal trajectory for a cooperative robot. They 
showed that to find the maximum and minimum values 
of acceleration at each point, one should solve a linear 
programming problem. They, however, did not elabo-
rate on calculation of switching points, which itself is a 
very difficult part of the solution. Hasan Ghasemi and 
Sadigh [8] extended the work by Pfeiffer and Johanni to 
propose a direct method for computation of critical 
points for parallel manipulators and presented an algo-
rithm to construct the switching curve. These advance-
ments have made the situation for parallel manipulators 
similar to serial ones. 
Minimum time motion of redundant manipulators along 
specified path is another interesting subject which has 
been studied in past two decades. Ma and Watanabe [9] 
and Galicki [10] extended the method proposed by 
Bobrow et.al. for serial redundant manipulators. They 
applied different secondary constraints such as heat 
characteristics and kinematic constraints to solve the 
problem.  
Mattmüller and Gisler  [11] presented a near time-
optimal and jerk-constrained trajectory planner so that 
the constraint on the jerk translates into limits for the 
curvature of the phase-space velocity. Constantinescu 
and Croft  [12] extended the time-optimal method to 
solve this problem with jerks constraints (limits on the 
rate of actuator torques) using perturbation trajectory 
improvement algorithm. Bianco and Piazzi  [13] pre-
sented a global optimization approach to obtain a 
minimum-time cubic spline trajectory for manipulator 
point-to-multipoint operations subject to constraints 
given by limited joint torques and torque derivatives.  
Osumi et al.  [14] developed a time-optimal control 
method for quadruped walking robots and installed into 
a practical robot system. Yi et al.  [14] presented a pro-

gramming method for time-optimal control of a mobile 
robot. 
In spite of all above mentioned advancements in this 
area during last two decades, which made it possible to 
compute the maximum and minimum acceleration on 
line, switching points needs off line computation. This 
fact, which is due to computation of critical points, and 
backward integration for first and last switching points, 
prevents this method to be used as a control algorithm. 
So far the method can only be used for time optimal 
path planning. 
This paper takes advantage of the previous theoretical 
developments in this area and presents a learning algo-
rithm to find switching points and near-minimum time 
solution. The method can be used both for serial and 
parallel manipulators. Considering the fact that mini-
mum time solution is bang-bang in terms of tangential 
acceleration, the basic idea behind the proposed method 
is to move the manipulator on the specified path on 
consequent segments of maximum acceleration, con-
stant velocity, and maximum deceleration and to learn 
the manipulator to reduce and adjust the constant veloc-
ity period in each step of learning process. As the con-
stant velocity period gets smaller and smaller, the solu-
tion converges the time optimal and two switches on 
the start and final time of constant velocity period con-
verge the real switch. Adjustment of second switch also 
pushes the final error to zero. In fact, this method does 
not propose a new optimization algorithm, but it is a 
method to reduce calculation effort and backward inte-
grations, necessary for finding switching points during 
a minimum time motion. This method substitutes the 
tedious numerical procedure of calculation of switching 
points with a simple learning process. As a result of this 
reduction in numerical effort, the method could be used 
online in practical problems. After this introduction, a 
brief statement of time-optimal problem along with 
phase-plane solution given by Dubowskey [1] is pre-
sented in section two. The main idea of algorithm for 
single switch cases is discussed in third section. The 
fourth section is devoted to multi-switch cases followed 
by some numerical examples in fifth section. 

2. Time Optimal Problem 
Consider a non-redundant serial manipulator, which is 
supposed to move a payload from an initial point to a 
final point on a specified task space trajectory in mini-
mum time subject to actuator's saturation limit. Motion 
of the payload in task space is defined by n coordinates; 

],...,[ 1 nXXX  and the motion of the system is 

defined with n variables; i.e. T
nqq ],...,[ 1q . 

The equations of motion of such system can be written 
as 

111 )(),()(   mmnnnnn τqBqqhqqM                (1) 

In this equation, M, h, and τ  are, respectively, the 
generalized mass matrix, coriolis and centrifugal terms, 
and the array of actuator forces. 

The path in task space, X, can be stated as 
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Where q , p and J, respectively denote the array of 

joint coordinates, direct kinematic relation of the ma-
nipulator and its Jacobian. On the other hand, the path 
can be expressed in terms of the non dimensional arc 
length variable, s , as 
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In above equations, f shows the relation of the path in 
task space with non dimensional arc length parameter, 
s, also, (.)' denotes derivative with respect to s . Substi-

tuting for X , X  and X  from equations (3) into equa-
tions (2) and solving for q , q  and q  one gets: 

))((1 sfpq                    (4) 

ss  )(11 fJXJq                    (5) 

ssssss  )())()(( 1121111 fJJJffJXJJJXJq         (6) 

Where 1P  represent the inverse kinematics. Substitut-
ing equations (4), (5) and (6) into equation (2), one can 
rewrite equations of motion as: 

11
2

11
~

  mmnnnn ss τBedc                 (7) 

The above system of equations represent n equations 
with two states,  ss ,  a similar formulation for a non-
redundant parallel manipulator will result in equations 
of motion similar to equation (7); detailed formulation 
for such systems can be found in [8]. Any motion of the 
system, which moves the object on the prescribed path, 
must satisfy all above equations. Now, the optimization 
problem can be stated as:  
Problem (1): Find the desired path, s*(t), which mini-

mizes 
f

0

t

t
dt  subject to 

mi

ssssss

iii ,...,1
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~

)()()(

max,min,

2





τBedc 

                       (8) 

It can be shown, see Bobrow et al. [1], that the solution 
to this problem is  bang-bang in s . To solve problem 
(1), one has to take the following steps: 
1- Find the minimum and maximum acceleration at 
each step 
2- Find the switching points and switch the acceleration 
at switching points. 
It can be shown that all switching points are located on 
a switching curve [8], which for a specified manipulator 
is only a function of the desired trajectory. As stated in 
previous section there is no method for online calcula-
tion of switching points. In next section, we describe 
the proposed learning algorithm to find the switching 
points. 

3. Single Switch Algorithm 

We assume that the described path is such that mini-
mum time motion can take place with a single switch. 
As explained in first section, in the first step of learning 

algorithm we start the motion from 0s  with maximum 

acceleration. The acceleration is then switched to zero 
at 1s , see Figure 2, and motion is continued with con-

stant velocity until the end effector reaches point 2s  

along the path. At this point acceleration is switched to 
its minimum possible value and the motion is continued 
until the line 0s  is crossed. With this planned mo-
tion, one might expect s at final point to be different 

from desired one, fs .  

Figure 2. schematic diagram of first step in learning process 

Considering that the minimum time solution is bang-
bang in terms of s , we know that the final solution is 
obtained if 2s  coincide with 1s . In other words, the 

solution is obtained once constant velocity portion of 
motion is totally eliminated and the manipulator is 
either moving with maximum acceleration or decelera-
tion along the path. With this in mind, we must suggest 
a learning algorithm which can decrease the distance 

between is1  and is2  and to decrease the final error, 

f
i
e

i ss  . The first action causes two approximate 

switching points 1s  and 2s  to converge to the exact 

switch and second action causes the end effector to stop 
at the desired final point. To make the algorithm clear 
we first propose separate algorithms for these two ac-
tions and then try to combine them and present the final 
algorithm. 
 

3.1 Elimination of Final Error 
To eliminate the final error, assuming that minimum 
acceleration trajectories are almost parallel we may 

change the switching point is2  to iis 2  at step i+1 

which means  
iii ss 

2
1

2                       (9) 
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This correction continues until the final error becomes 
smaller than a reasonable value,  . Figure 3 shows the 

algorithm of eliminating final error while is1  is kept 

constant. 

Figure 3. schematic diagram of the process eliminating final 
errors 

3.2 Finding the Switching Point 

To find the switching point, we increase 1s , and de-

crease 2s  at each step until these, two converge to the 

single switch. To this end, at each step we change the 
switching points by a value of   as follow 

1
2

1
2

1
1

1
1








iii

iii

ss

ss




                    (10) 

The value of 1i  can be considered as follow 
)(2)( 0120

1 ssssifss f
ii

f
i       (11) 

In which,   is a constant which indicates how fast the 
switch points should approach each other in the early 
stages of the learning process, where the distance be-
tween  1s  and 2s  is still larger than twice of  . The 

value of   should always be smaller than 0.5 and a 
good typical value for that would be some thing be-
tween 0.05 to 0.2. Smaller values of   means slower 
and safer approach to switch, while larger values of   
means faster approach to the switch but at the risk of 
crossing non-feasible region boundary; i.e. leaving the 
desired trajectory. Figure 4.a shows schematic graph of 
this algorithm. 
As the learning process advances and two switches 
approach each other, their distance become smaller than 
2  and it would not be possible to take the next step. In 

this case, considering the unsymmetric shape of the 
solution trajectory, see figure 4.b, we may assume that 

the distance of exact switch from is1  and is2  is different 

and is proportional to their distances travelled by 
maximum acceleration and maximum deceleration; i.e., 

is1  and ii
e ss 2 . With this assumption one might calcu-

late 1i  as: 

)(2
)(2

012
11 ssssif

dss

dss
f

ii
ii

e

ii
i 


         (12) 

In which   is a constant which shows how fast the 

switch points should approach each other at final stages 
of the learning process. The maximum value for   is 

one and a good typical value for   would be something 

between 0.75 to 0.9.  
 

 

Figure 4.a. schematic diagram for algorithm of finding 
switching 

 

Figure 4.b. schematic diagram for new value of 
1i  

3.3 Final Algorithm 

At this stage, we may combine the above mentioned 
algorithms to obtain one which both approaches the 
approximate switches to the real one and to eliminate 
the final error. To this end, it is sufficient to make cor-

rections to is2  based on both algorithms which means 

to calculate 1
2
is  as follow 
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iiii ss    1
2

1
2                     (13) 

Where i  and i  are as defined in equation (9) to 
(12). Figure 5 shows how the final combined algorithm 
works. 

 
Figure 5. schematic diagram of results of  minimum time 

algorithm 

4 Multi Switch Algorithm 

In this section, we consider the case where solution 
trajectory in phase plane enters non-feasible region; i.e. 
end effector leaves the prescribed path. For instance, 

suppose that at sti 1  iteration, solution trajectory en-
ters NFR, as shown in Figure 6. In this case, in next 
learning iteration we simply try to perform the single 

switch algorithm once between points ( is1 , is ) and 

( 1cs , is ), and then between points ( 1cs , is ) and ( is2 , 
is ), see Figure 6. If in the process of finding these 

switches, the solution trajectory again intersects the 
NFR, a second critical point 2cs  is introduced and 

similar algorithm of single switch is applied for that. To 
ensure escaping from crossing the NFR again and again 

it is suggested that 1i  be reduced effectively. This 
means that in neighbourhood of a difficult portion of 
the path increase of velocity must be slowly. 

5 Numerical Example 

Figure 7 shows the schematic of a system composed of 
two planar manipulators handling a payload. The 
physical characteristics of the system are indicated in 
Table 1. Each manipulator has three DOFS. It is 
assumed that the payload is rigidly grasped such that no 
slipping or rotation is possible at contact points.  
 

Figure 6. schematic diagram of multi switch algorithm 

 
Table 1. physical characteristic of the system 

 

5.1 Single Switch Problem 

The system is assumed to move the payload on a pre-
scribed path defined by equation (14), see Figure 7. 

ss

ssy

sx

6
)(

10s0.7-02.1)(

s0.3)(

 




             (14) 

Figure 7. specified path and final configuration 

 
Exact solution obtained by forward integration with 
maximum acceleration from initial point and backward 
integration from final point results in 0.4693 as 

mLmLLmLLmLL o 2.0,3.0,6.0,5.0 635241 

kgmkgmmkgmmkgmm o 13.011 635241 

mNT .]20,50,70,20,50,70[max τ ,   maxmin ττ   

mb 7.00   
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switching point and 0.1647 as the total time elapse. 
This problem is solved taking advantage of the 
proposed method. The constant   is considered to be 

0.1 which means 1
1s  is taken as 0.1 and 1

2s  as 0.9. As 

one can see after four steps the conditions of 

)(2 012 ssss f
ii    is violated and i  is reduced 

from 0.1 to 0.047, and in next step to 0.0152. As the 
results in Table 2 show, approximate switches converge 
to the real switch after six steps of learning process. As 
can be seen this algorithm could obtain the switching 
time and the minimum time solution with no backward 
integration or length calculations. Figure 8 shows the 
final trajectory and boundary of non-feasible region for 
desired trajectory in phase plane.  
 

Table 2. simulation results for single switch problem 

 

Figure 8. simulation results of learning process in phase 
plane 

5.2 Multi Switch Problem 

The system is assumed to move the payload on a circu-
lar path defined by equation (15), see Figure 9. 
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sssy

ssx

5.0)(

1062.0)
3

2
sin(2.0)(

)
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2
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


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





                  (15) 

Figure 9. specified path and final configuration 

Solution of this problem also starts based on the single 
switch algorithm stated in section 3 with 08.0 . As 
one can see from Table 3, after two steps, the solution 
trajectory intersected the boundary of non-feasible 
region. As suggested in section4, we tried to find one 
switch before 1cs  and one switch after 1cs . Simulation 

results for this process are given in Table 4. As one can 
see after 30 steps of learning process both switches on 
left and right of 1cs  are converged. However, learning 

process for finding these switches are very costly. An-
other point which worth mentioning is that the results 
obtained in first learning step is 10% more than the 
time elapse obtained from exact optimal solution of the 
problem, which is equal to 0.1981 sec. the next 30 steps 
of learning has reduced this 10% error to 1.3%. Figure 
10 shows the final trajectory in phase plane as well as 
the non-feasible region boundary. 

Exact solution to this problem by the conventional 
technique introduced by Bobrow et.al. [1] amounts to 
calculation of NFR boundary which needs a point to 
point calculation for each value of s from zero to one. 
Then the critical points on this boundary are to be cal-
culated based on the algorithm introduced by Pfeiffer 
and Johanni [2] and Ghasemi and Sadigh [8]. Then one 
needs to perform direct integration from initial point 
and from critical points with maximum acceleration and 
backward integration from final point and critical points 
with maximum deceleration. The final step in the solu-
tion would be to intersect generated trajectories to ob-
tain exact switches. Comparing the simple calculations 
needed for comparing switching points in proposed 
algorithm with the lengthy and time consuming compu-
tations necessary for obtaining exact switching points 
reveals the significance of proposed technique. 
 
Table 3. numerical results for circular path before crossing BNF 

step         is1
         is2     iii ssds 12         is            

i            
i        contact      

it   

  
1         0.1000    0.9000             0.8000                 5.6762        0.0800          0.0122          1         0.2182 
  
2         0.1800    0.8032             0.6232                 7.8189         0.0800          0.0122         0         

 

Step      is1    is2    iii ssds 12      is       i     
i     it  

1      0.1000    0.9000    0.8000       6.3781   0.1000    0.0856    0.2188 
2      0.2000    0.6815    0.4815       8.8294   0.1000   ‐0.0357    0.1698 
3      0.3000    0.6239    0.3239     10.4794   0.1000    0.0168    0.1700 
4      0.4000    0.5052    0.1052     11.6739   0.1000   ‐0.0209    0.1628 
5      0.4470    0.4798    0.0328     12.0865   0.0470   ‐0.0117    0.1637 

6      0.4622    0.4765    0.0143     12.2121   0.0152   ‐0.0044    0.1647 
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Figure 10. boundary of non-feasible region and solution path in 
phase plane  

 
Table 4. numerical result of near minimum time motion 

it  
i
b

i
b

i
b

i
b sdsss 21

 ii
a

i
a

i
a

i
a sdsss 21

 step 

0.2278 

0.2019 

0.196 

0.2013 

0.2011 

0.2009 

0.2007 

0.5406    0.9900   0.4494   5.7351 
 

0.7406    0.8028   0.0622   6.6891 
 

0.7656    0.7977   0.0321   6.9572 
 

0.7856    0.7860   0.0004   7.0930 
 

0.7856    0.7860   0.0004   7.0930 
 

0.7856    0.7860   0.0004   7.0930 
 

0.7856    0.7860   0.0004   7.0930 

0.1058   0.3998   0.2940   5.8781   0.0050  

0.1168   0.3763   0.2595   6.1843   0.0050  

0.1328   0.4107   0.2779   6.6381   0.0050 

0.1398   0.1767   0.0369   6.8417   0.0050 

0.1403   0.1792   0.0389   6.8515   0.0050 

0.1408   0.1817   0.0409   6.9005   0.0050  

0.1413   0.1842   0.0429   6.9005   0.0050 

     
      1 

    5 
 
10 
 
15 
 
20 
 
25 
 
30 

6. Conclusion 

Problem of on line computation of switching points for 
a time optimal problem of a manipulator moving along 
a specified path is considered. The procedure can be 
used for on line evaluation of open loop time optimal 
control for both serial and parallel manipulators moving 
on a prescribed path. The method is based on the idea 
of moving end effector on the specified path on conse-
quent segments of maximum acceleration, constant 
velocity, and maximum deceleration, and to learn the 
control to reduce and adjust the constant speed interval 
at each step of the learning process. This way two 
switches finally converge to the exact one and the final 
error is also eliminated. A development of the algo-
rithm is also given for multi switch cases. The validity 
of the method is checked by solving time optimal prob-
lem for two cases of a double three link planar parallel 
manipulator, along a straight line and then along a cir-
cular line. The results for straight line show that in six 
steps of training, the final error is less than 0.44% and 
the travelling time is 0.28% more than the exact mini-
mum time. These results are very promising both in 
accurate tracking and in fast learning process. Similar 
results are also reported for the circular path.  
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