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 This paper presents a Gaussian radial basis function neural network based on 
sliding mode control for trajectory tracking and vibration control of a flexible joint 
manipulator. To study the effectiveness of the controllers, designed controller is 
developed for tip angular position control of a flexible joint manipulator. The 
adaptation laws of designed controller are obtained based on sliding mode control 
methodology without calculating the Jacobian of the flexible joint system. Also in 
this study, the anti-control is applied to reduce the deflection angle of flexible 
joint system. To achieve this goal, the chaos dynamic must be created in the 
flexible joint system. So, the flexible joint system has been synchronized to 
chaotic gyroscope system. In this study, control and anti-control concepts are 
applied to achieve the high quality performance of flexible joint system. It is tried 
to design a controller which is capable to satisfy the control and anti- control aims. 
The performances of the proposed control are examined in terms of input tracking 
capability, level of vibration reduction and time response specifications. Finally, 
the efficacy of the proposed method is validated through experimentation on 
QUANSER’s flexible-joint manipulator. 

 

1. Introduction  

The trajectory tracking control of robotic manipulators 
with joint flexibility has received considerable attention, 
owing to the complexity of the problem. Many robots 
incorporate harmonic drives for speed reduction, and it is 
known that such drives introduce torsional elasticity into 
the joints [1]. Industrial robots generally have elastic 
elements in the transmission systems, which may result in 
the occurrence of torsional vibrations when a fast 
response is required. For many manipulators, joint 
elasticity may arise from several sources, such as 
elasticity in gears, belts, tendons, bearings, hydraulic 
lines, etc., and may limit the speed and dynamic accuracy 
achievable by control algorithms designed assuming 
perfect rigidity at joints. A proper choice of mathematical 
model for a control  

 
system design is a crucial stage in the development of 
control strategies for any system. This is particularly true 
for robotic manipulators due to their complicated 
dynamics [2]. 
Experimental evidence suggests that joint flexibility 
should be taken into account in both modeling and control 
of manipulators if high performance is to be achieved. To 
model this elastic behavior in the joints, the link is 
considered as connected to rotor through a torsional 
spring of stiffness K.  The introduction of joint flexibility 
in the robot model considerably complicates the equations 
of motion. In particular, the order of the related dynamics 
becomes twice that of the rigid robots, and the number of 
degrees of freedom is larger than the number of inputs, 
making the control task difficult. Research on the 
dynamic modeling and control of flexible robots has 
received increased attention in the last decades. A first 
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step towards designing an efficient control strategy for 
manipulators with flexible joints must be aimed at 
developing dynamic models that can characterize the 
flexibility of the joints accurately. The controller design 
that minimizes the effects of the flexible displacements in 
lightweight robots is highly demanded in many industrial 
and space applications that require accurate trajectory 
control. In control applications of robot manipulators with 
flexible arms are targeted either to reach a target position 
or to follow a prescribed trajectory. In the first case to 
reach a target position, a short settling time is desired 
while a large robot arm displacement is planned in the 
second case to follow a prescribed trajectory. In both 
case, strong control actions are applied to the robot arm 
and as a result, undesired behaviors could appear if 
vibrations induced in the robot arm are not considered 
[3]. 

The control issue of the flexible joint is to design the 
controller so that link of robot can reach a desired 
position or track a prescribed trajectory precisely with 
minimum vibration to the link. In order to achieve these 
objectives, various methods using different technique 
have been proposed such as follow: 

Linear quadratic regulation (LQR) control [4], 
Adaptive output-feedback controller based on a 
backstepping design [5-7], Nonlinear control based on 
feedback linearization technique and the integral 
manifold technique [8,9], Robust control based on PD 
control [10], and robust H∞ control [11], Fuzzy 
control, PD fuzzy and Neural network [12-15] , 
Optimal control [16, 17], etc [2, 18-22]. 

In this paper, Gaussian radial basis function neural 
network (RBFNN) based on sliding mode control is 
designed to control of flexible joint system. The 
adaptation laws of RBFNN are obtained based on sliding 
mode control methodology without calculating the 
Jacobian of the system. Also, anti-control is applied in 
this study to reduce the deflection angle of flexible joint 
system. It means that the chaotic dynamic can be useful to 
control of flexible joint system as an anti- control (More 
details are presented in section IV).  In this study, to 
create the chaos dynamic in the flexible joint system, this 
system can be synchronized to the chaotic gyroscope 
system. Therefore, control and anti-control are applied to 
achieve the high quality performance of flexible joint 
system. It is tried to design a controller which is capable 
to satisfy the control and anti- control aims. The designed 
controller has been implemented on the QUANSER 
flexible joint system. 

The advantages of this proposed method to control of 
flexible joint not considered in previous study are 
mentioned as follow: 

This method is capable to reduce the deflection angle of 
the flexible link with considering the scale of reduction. 
The global stability of the system is guaranteed while the 

system is synchronized with a chaotic system. The 
proposed control method is robust due to be sliding 
surface and sliding mode control in proposed control 
method. 

This paper is organized as follows: The flexible joint 
manipulator and modelling of this system are described in 
section II. Control problem formulation is presented in 
Section III. In section IV, chaos in flexible joint and 
chaos synchronization are explained. Also, chaotic 
gyroscope system is described in this section. In section 
V, the RBFNN based on sliding mode control is designed. 
The switching surfaces and learning algorithm of RBFNN 
are presented in this section. Finally, the implementation 
and results obtained from QUANSER flexible joint 
system are presented to show the effectiveness of 
proposed control method in section VI. At the end, the 
paper is concluded in section VII. 

2. Description of The Flexible Joint Manipulator  

The flexible joint manipulator system considered in this 
work is shown in Fig. 1, where   is the tip angular 
position and  is the deflection angle of the flexible link. 
The base of the flexible joint manipulator which 
determines the tip angular position of the flexible link is 
driven by servomotor, while the flexible link will 
response based on base movement. The deflection of link 
will be determined by the flexibility of the spring as their 
intrinsic physical characteristics [23]. 

 
Fig.1. Flexible Joint Manipulator System. 

 

A. Modeling of  the System 

This section provides a brief description on the modeling 
of the flexible joint manipulator system, as a basis of a 
simulation environment for development and assessment 
of the nonlinear control. The Euler-Lagrange formulation 
is considered in characterizing the dynamic behavior of 
the system. Considering the motion of the flexible joint 
system on a two-dimensional plane, the potential energy 
of the spring can be formulated as [23]: 

21

2 stiffV K                                                                  (1) 
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where stiffK is the joint stiffness. The kinetic energies in 

the system arise from the moving hub and flexible link 
can be formulated as:  

 221 1

2 2eq ArmT J J                                  (2) 

where eqJ and ArmJ are the equivalent inertia and total 

link inertia, respectively. To obtain a closed-form 
dynamic model of the flexible joint, the energy 
expressions in Eq. (1) and Eq. (2) are applied to formulate 
the Lagrangian, that is: 

 22 21 1 1

2 2 2eq Arm stiffL T V J J K          
   

    (3) 

Two generalized co-ordinates are θ and α. Let the 
generalized torque corresponding to the generalized tip 

angle be output eqT B   . Using Lagrangian’s equation as 

follow: 

output eq
L L

T B
t




         



                  (4)          

0
L L

t  
         

                                                          (5) 

The equation of motion is obtained as below: 

 eq Arm output eqJ J T B                              (6)          

  0Arm stiffJ K                                                    (7) 

 

where eqB   is the equivalent viscous damping and outputT  

is the output torque on the load from the motor, defined 
as: 

 m g t g m g m
output

m

K K V K K
T

R

  



                              (8) 

where m  is the motor efficiency, g is the gearbox 

efficiency, tK  is the motor  torque constant, gK is the 

high gear ratio, mK  is the motor back-EMF constant and 

mR  is the armature resistance. The linear model of the 

uncontrolled system can be represented in a state-space 
form as shown in equation Eq. (9), that is: 
 

1 3

2 4

3 2 3

4 2 3

x x

x x

x ax bx cu

x dx fx cu

 

 


  
   









                                                      (9) 

 

where [ ]Tx       , and a , b , c , d and f

are given as: 

 

2

2

stiff

eq

m g t m g eq m

eq m

m g t g

eq m

stiff eq Arm

eq Arm

m g t m g eq m

eq m

K
a

J

K K K B R
b

J R

K K
c

J R

K J J
d

J J

K K K B R
f

J R

 

 

 


 


  
 


 




 


  


                                            (10) 

In Eq. (9), the input u is the input voltage of the 
servomotor, mV which determines the flexible joint 

manipulator base movement. In this study, the values of 
the parameters are defined as Table.1. Directions of 
torque to reduce the deflection angle when link moves 
anti-clockwise and clockwise are shown in Fig.2 (a) and 
Fig. 2 (b), respectively. 

 

3. Control Problem Formulation 

In the previous section, it has been shown that the flexible 
joint system can be considered as an under-actuated 
system. In order to improve the performance of the 
dynamic system, we need to control the flexible joint 
system with a suitable motion which is beneficial for 
working with a particular condition. It is thus of great 
practical importance to develop suitable control methods. 
For this purpose, in this section, control problem of the 
flexible joint system is formulated. The control aims are 
that: 

 

 
TABLE.1: SYSTEM PARAMETERS 

Symbol Quantity value 

mR Armature Resistance    2.6 

mK Motor Back-EMF Constant 
 . /V rad S  

0.00767 

tK Motor Torque Constant  . /N M A  0.00767 

ArmJ Total Arm Inertia  2.kg m  0.0035 

eqJ  Equivalent Inertia  2.kg m  0.0026 

gK  High Gear Ratio 14:5 

stiffK  Joint Stiffness 1.2485 

eqB  Equivalent Viscous Damping 
 . . /N M S rad  

0.004 

g  Gearbox Efficiency 0.9 

m Motor Efficiency 0.69 
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Fig.2 (a): Direction of torque to reduce deflection angle when 

link moves anti-clockwise.  
 

 
Fig.2 (b): Direction of torque to reduce deflection angle when 

link moves clockwise. 

 

 (1)Tracking the desired tip angular position, (2) 
Minimizing the deflection angle. 

Therefore, the control problem is to drive the system to 
track a four-dimensional desired vector ( )dX t  as 

follows: 

 

1 2 3 4 1 2 1 2( ) [ , , , ] [ , , , ]T T
d d d d d d d d dX t x x x x x x x x                   (11) 

, which belongs to a class of C function on 0[ , )t  . Let 

us define the tracking error as:  

1 _1

2 _ 2

c d

s d

e x x

e x x

 
  

                                                         (12) 

Then, the error dynamics can be obtained from Eq. (12) 
and Eq. (9) as follow:  

 

1 _1 3 _1

2 _ 2 4 _ 2

c d d

s d d

e x x x x

e x x x x

   
    

   

   
                                     (13) 

To achieve the control input, it is necessary to differentiate 
Eq. (13). From Eq. (13) and Eq. (9), we obtain: 

1 2, 3 1

2 2, 3 2

3 _1 2 3 _1

( , )

1 2, 3 1

4 _ 2 2 3 _ 2

( , )

2 2, 3 2

( , )

( , )

d

d

c d d

g x x x

d

s d d

g x x x

d

e x x ax bx x cu

g x x x cu

e x x dx fx x cu

g x x x cu









     


  
      


  

   


   


                        (14) 

Therefore, the control problem can be formulated as 
follow:   

1 2

2 1 2, 3 1

1 2

2 2 2, 3 2

( , )

( , )

c c

c d

s s

s d

e e

e g x x x cu

e e

e g x x x cu





 


 



  









                                           (15) 

Define the error vector as: 

 
1 2 1 2( ) [ ( ), ( ), ( ), ( )]T

c c s sE t e t e t e t e t                              (16) 

The control goal considered in this section is that for any 
given target orbit ( )dX t , the controller is designed such 

that the resulting tracking error vector satisfies:  

lim ( ) 0
t

E t


                                                              (17) 

where   is the Euclidean norm of a vector. 

4. Chaos in Flexible Joint 

In the previous section, the control aims have been 
explained. In this study, the desired vector ( )dX t will be 

considered as follow: (1) 1dx  is the trajectory of the 

reference input such as pulse and sinusoid trajectories 
shown in result section. (2) 2dx  is considered as a 

proportional trajectory of a chaotic mechanical system 
such as a chaotic gyroscope system. This choice has been 
proposed to use the properties of chaotic systems 
described in the next section. 

a. Chaos Synchronization to Control of Flexibel Joint 

Dynamic chaos is a very interesting nonlinear effect 
which has been intensively studied during the last three 
decades. Chaos control can be mainly divided into two 
categories [24]: one is the suppression of the chaotic 
dynamical behavior and the other is to generate or 
enhance chaos in nonlinear system. 

In this study, chaos synchronization [25] has been 
suggested to create the chaotic behavior in the flexible 
joint system. Basically, the chaos synchronization 
problem means making two systems oscillate in a 
synchronized manner. Given a chaotic system considered 
as the master system, and another system considered as 
the slave system, the dynamical behaviors of these two 
systems may be identical after a transient time when the 
slave system is driven by a control input. Different types 



International Journal of Robotics, Vol.2, No.1, (2011)/ M. Z. Pedram, M. Aliyari Shoorehdeli, F. Farivar, M. R. Kandroodid 

39 

of synchronization have been found in interacting chaotic 
systems, such as generalized projective synchronization 
that the master and slave vectors synchronize up to a 
constant scaling factor   (a proportional relation) [26-
28].  

In this study, the flexible joint system and the chaotic 
gyroscope system have been considered as the slave and 
the master systems, respectively. 

 

Notice that, the second state of the flexible joint will be 
synchronized to the second state of the chaotic gyroscope 
system. This synchronization is the generalized projective 
synchronization with a constant scaling factor . So,  

2 2d gyrox x                                                                (18) 

where   is very small scalar value in the range of 10 n , 
3 5n  . 

In this section, chaos synchronization is used as the anti-
control to control of the flexible joint system. In the next 
part, dynamics of the chaotic gyroscope system are 
described. 
 

b. Chaotic Gyroscope System 

The symmetric gyroscope mounted on a vibrating base is 
shown in Fig. 3. The dynamics of a symmetrical gyro with 
linear-plus-cubic damping of angle   can be expressed as 
[29]:  

2
2 3

1 23

(1 cos )
sin sin sin

sin
c c f t

       



                        (19) 

where sinf t is a parametric excitation, 1c  and 3
2c  

are linear and nonlinear damping terms, respectively and 

 sin)sin/)cos1(( 322   is a nonlinear resilience 

force. According to [29], in a symmetric gyro mounted on 
a vibrating base, the precession and the spin angles have 
cyclic motions and hence their momentum integrals are 
constant and equal to each other. So the governing 
equations of motion depend only on the mutational angle
 . Using Routh’s procedure and assuming a linear-plus-
cubic form for dissipative force, Eq. (19) is obtained [29]. 
Given the states 1x and 2x    and

2 2 3( ) ((1 cos ) / sin ) sing         , Eq. (19) can be 

rewritten as: 

1 2

3
2 1 1 1 2 2 1( ) ( sin )sin( )

x x

x g x c x c x f t x 




    




       (20)                                                             

This gyro system exhibits complex dynamics and has been 
studied by [29] for values of f in the range 32 36f   

and constant values of 2 100   , 1  , 1 0.5c  , 2 0.05c   

and 2  . Fig. 4 illustrate the irregular motion exhibited 
by this system for 35.5f   and initial conditions of

)1,1(),( 21 xx . 

 

              
Fig. 3:  A schematic diagram of a symmetric gyroscope. 

 

                     Fig.4: Time series of 1x  and 2x . 

In the next section, the control input will be obtained via 
Gaussian RBF neural network to achieve the control 
objective presented in previous section. Also, the learning 
algorithm of RBFNN based on sliding mode control is 
presented in the next section. 
 

5. GAUSSIAN RBF NEURAL NETWORK CONTROL BASED 

ON SLIDING MODE CONTROL 
 

Gaussian radial basis function neural network (GRBFNN) 
can be applied to control of flexible joint. The 
architecture of GRBFNN based on sliding mode control 
of the flexible joint system is shown in Fig.5.  The inputs 
of GRBFNN are sliding surfaces presented in the part B 
in this section. 
 

 
Fig.5: GRBFNN based on sliding mode control of the flexible joint 

system. 
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B. GRBF Neural Network 

The network structure of the GRBFNN is shown in Fig. 6, 
which can be considered as one layer feed forward neural 
network with nonlinear element. The GRBFNN output can 
perform the mapping according to: 

 

1

( ) ( , , )
n

j j j j j

j

f z w G z m 


                                             (21) 

where nT
n Rzzzz  ],...,,[ 21 is the input vector, 

njRmzG n
jjjj ,...,2,1,),,(   are the Gaussian radial 

basis function, Rj  is the spread of Gaussian function, 

jm  is the mean value of Gaussian function  and n is the 

number of neurons. Each Gaussian radial basis function 
can be represented by: 

2

( , , ) exp
2

j j
j j j j

j

z m
G z m 



 
 
 
 

                                         (22) 

Notice that the optimal values are not unique.  

In this study, m  and   are not trained. The input vector 
z is 1 2[ , ]S S  and the GRBFNN output f is considered as 

the control input u . 

 
Fig.6: Structure of GRBF neural network 

 

C. Switching Surface  

Using the sliding mode control method to control the 
flexible joint system, involves two basic steps; (1) 
Selecting an appropriate sliding surface such that the 
sliding motion on the sliding manifold is stable and 
ensures lim ( ) 0

t
E t


 . (2) Establishing a robust control 

law which guarantees the existence of the sliding 
manifold 0)( tS . The sliding surfaces are defined as 

[30]: 

1

( ) ( )
n

d
S t e t

dt



   
 

                                                    (23)       

where ( )S t R  and   is a real positive constant 

parameter. Differentiating Eq. (23) with respect to time as 
follow: 

( ) ( )
n

d
S t e t

dt
   

 
                                                        (24)       

The rate of convergence of the sliding surface is governed 
by the value assigned to parameter  . Having established 
appropriate sliding surfaces, the next step is to design the 
control input to drive the error system trajectories onto 
the sliding surfaces.  

 

In this study, define two sliding surfaces as: 

1 2 1 1( ) ( ) ( )c cS t e t e t                  (25)      

   2 2 2 1( ) ( ) ( )s sS t e t e t                  (26) 

Eq. (25) and Eq. (26) are designed as the input of 
GRBFNN. Differentiating Eq. (25) and Eq. (26) with 
respect to time as follow: 

1 2 1 1( ) ( ) ( )c cS t e t e t                                                        (27)         

     2 2 2 1( ) ( ) ( )s sS t e t e t                                              (28) 

Substituting Eq. (15) into Eq. (27) and Eq. (28), then we 
obtain: 

1 1 1 2( ) ( ) cS t g e cu                        (29)   

2 2 2 2( ) ( ) sS t g e cu                                                     (30) 

D. Learning Algorithm 

Define the cost function as follow:    

1 1 2 2E S S S S                                                                 (31) 

where 1S and 2S are presented in Eq. (23) and Eq. (24).  

By using Back-Propagation (BP) algorithm, the weighting 
vector of the RBFNN is adjusted such that the cost 
function defined in Eq. (31) is less than a designed. The 
well-known algorithm may be written briefly as: 

( 1) ( )
E

w k w k
w

 
  


                                                    (32) 

where  and w represent the learning rate and tuning 

parameter of RBFNN. The gradient of E in Eq. (32) with 
respect to the weighting vector w can be obtained as 
follow: 

   1 1 2 2 1 2
1 2

S S S S S SE
S S

w w w w w

   
   

    

   
                     (33) 

Eq. (33) can be rewritten as follow: 

1 2
1 2

S SE u u
S S

w u w u w

   
 

    

 
                                           (34) 
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With considering Eq. (29) and Eq. (30), Eq.(28) can be 
simplified as follow: 

 1 2
E

c S S G
w


 


                                                          (35) 

where c  and G  are presented in Eq. (10) and Eq. (22). 

Therefore, the adaptation law of GRBFNN is obtained as: 

 1 2( 1) ( )w k w k c S S G                                           (36) 

6. IMPLEMENTATION AND RESULTS 
In this section, the proposed control has been 
implemented and tested within the simulation 
environment of the flexible joint manipulator and the 
corresponding results are presented.  
The control signal generated has been applied to the 
flexible joint manipulator through QUANSER’s 
interfacing hardware board. The fourth order Runge–
Kutta algorithm are applied to solve the sets of 
differential equations related to the systems with a time 
grid of 0.001. 

The system responses namely the tip angular position and 
deflection angle are observed. The performances of the 
designed control are assessed in terms of vibration 
suppression, trajectory tracking and input control. 
Moreover, time response specifications are summarized 
on Table.2. Finally, a comparative assessment of the 
performance of the control schemes is presented and 
discussed.  

The parameters of designed control are: 

1 2.9  , 2 28  , .00001  , 0.0001  5n neurons , 

[ 3 1.5 0 1.5 3]m    , and 35  . 

Implementation results have been investigated as follow: 

a) The flexible joint manipulator is required to follow a 
pulse-trajectory of 28.65º (=0.5 rad) and 57.30º (=1 
rad) with the frequency 0.1Hz.  

Fig.7 and Fig.8 are corresponding to a pulse-trajectory of 
28.65º and 57.30º, respectively. As Fig. 7(a) shows the 
flexible joint manipulator tracks the pulse-trajectory of 
30º. Fig 7(b) demonstrates deflection angle. It is 
observable that deflection angle amplitude's range is 
satisfactory and it has a suitable damping ratio. The 
control input is shown in Fig. 7(c). As Fig. 8(a) shows the 
flexible joint manipulator tracks the pulse-trajectory of 
60º. Fig 8(b) demonstrates deflection angle. It is 
observable that deflection angle amplitude's range is 
satisfactory and it has a suitable damping ratio. The 
control input is shown in Fig. 8 (c). 

 

 

 
Fig.7: (Desrired: pulse-trajectory of 28.65º) 

 (a) Tip angular position of the flexible joint manipulator, (b) 
Deflection angle the flexible joint manipulator, (c) Control input. 

 

 

Fig.9 and Fig.10 are corresponding to a sinusoid-
trajectory of 28.65º and 57.30º with the frequency 0.1Hz, 
respectively. As Fig. 9(a) shows the flexible joint 
manipulator tracks the sinusoid-trajectory of 30º. Fig 9(b) 
demonstrates deflection angle. It is observable that 
deflection angle amplitude's range is satisfactory and it 
has a suitable damping ratio. The control input is shown 
in Fig. 9(c). As Fig. 10(a) shows the flexible joint 
manipulator tracks the sinusoid-trajectory of 60º. Fig 
10(b) demonstrates deflection angle. It is observable that 
deflection angle amplitude's range is satisfactory and it 
has a suitable damping ratio. The control input is shown 
in Fig. 10(c).  
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Fig.8: (Desired: pulse-trajectory of 57.30º) 

(a) Tip angular position of the flexible joint manipulator, (b) 
Deflection angle the flexible joint manipulator, (c) Control input. 
b) The flexible joint manipulator is required to follow a sinusoid-

trajectory with amplitude 28.65º (=0.5 rad) and 57.30º (=1 rad) 
with the frequency 0.1Hz. 

 
It is noted that the flexible joint manipulator reaches the 
required position within 0.5 sec, with little overshoot. 
However, a noticeable amount of vibration occurs during 
movement of the manipulator. It is noted from the 
deflection angle response that the vibration of the system 
settles within 1 sec with a maximum deflection angle of 
±6.  

The obtained results have been demonstrated that 
designed controller provide higher level of vibration 
reduction as compared to some studies such as [13, 16, 
17]. Also, the high performance of input tracking has 
been achieved. The speed of the response is slightly 
improved at the expenses of decrease in the level of 
vibration reduction. It is concluded that the proposed 
controller is capable of reducing the system vibration 
while maintaining the input tracking performance of the 
manipulator. Therefore, the proposed control is capable of 
reducing the system vibration while maintaining the 
trajectory tracking performance of the manipulator.  

 

 
Fig.9: (Desired: sinusoid-trajectory with amplitude of 28.65º) 
 (a) Tip angular position of the flexible joint manipulator, (b) 

Deflection angle the flexible joint manipulator, (c) Control input. 

 
7. Conclusions 
In this paper, a Gaussian RBFNN based on sliding mode 
control has been designed for trajectory tracking control 
of flexible joint manipulator system. The development of 
designed control and vibration suppression of a flexible 
joint manipulator have been presented. The anti-control 
concept is applied to reduce the deflection angle of 
flexible joint system. So, the chaos dynamic must be 
created in the flexible joint system and the flexible joint 
system has been synchronized to chaotic gyroscope 
system. Therefore, the control and anti-control concepts 
are applied to achieve the high quality performance of 
flexible joint system.  
The performances of the control schemes have been 
evaluated in terms of input tracking capability, level of 
vibration reduction, time response specifications.  

Experimental results have shown that the proposed 
approach is effective in practice. Acceptable performance 
in input tracking control and vibration suppression has 
been achieved with designed controllers. Moreover, a 
significant reduction in the system vibration has been 
achieved with the anti-control concepts. The obtained 
results have been demonstrated that designed controller 
provide higher level of vibration reduction as compared 
to some studies such as [13, 16, 17]. Also, the high 
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performance of input tracking has been achieved. The 
speed of the response is slightly improved at the expenses 
of decrease in the level of vibration reduction. It is 
concluded that the proposed controller is capable of 
reducing the system vibration while maintaining the input 
tracking performance of the manipulator.  

 

 

 
Fig.10: (Desired: sinusoid-trajectory with amplitude of 57.30º) 
 (a) Tip angular position of the flexible joint manipulator, (b) 

Deflection angle the flexible joint manipulator, (c) Control input. 

 

TABLE.2: MAGNIYUDE OF SPECIFICATIONS OF TIP ANGULAR 

POSITION 

Desired Trajectories 

Magnitude (deg) Pulse 
28.65º 

Pulse 
57.30º 

Sinusoid 
28.65º 

Sinusoid 
57.30º 

 

Specifications 
of tip angular 

position 
response 

Settling 
time (Sec) 1 1.03 

Not 
Defined 

Not 
Defined 

Rise time  

(Sec) 
0.23 0.47 

Not 
Defined 

Not 
Defined 

Overshoot  

(Percent %) 
0 2 

Not 
Defined 

Not 
Defined 

ACKNOWLEDGMENT 
Authors are much grateful to Dr M.Teshnehlab, the 
director of the intelligent system laboratory (ISLAB) of 
K. N. Toosi University for his support of  this study. 
 
 

 
 
 

REFERENCES 
 

[1] M. W. Spong and M. Vidyasagar, “Robot Dynamics and 
Control”,  New York: Wiley, 1989. 

[2] S. E. Talole, J. P. Kolhe, S. B. Phadke, “Extended-State-
Observer-Based Control of Flexible-Joint System With 
Experimental Validation”, IEEE Trans on Industerial 
Electronics, Vol. 57, No. 4, pp. 1411-1419,  2010. 

[3] F. M. Botsali, M. kalyancu, M. Tinkir, U. Onen, " Fuzzy 
Logic Trajectory Control of Flexible Robot Manipulator 
With Rotating Prismatic Joint”, 2nd international 
Conference on computer and automation engineering 
(ICCAE), pp.35-39, 2010.  

[4] M. A. Ahmad, “Vibration and Input Tracking Control of 
Flexible Manipulator using LQR with Non-collocated PID 
controller”, Proceeding of 2nd UKSIM European 
Symposium on Computer Modelling and Simulation, pp. 
40-45, 2008. 

[5] W.Yim, “Adaptive Control of a Flexible Joint 
Manipulator”,  IEEE International conference on Robotics 
and Automation,   pp. pp. 3441–3446., 2001. 

[6] J. H. Oh, J.S. Lee,  “Control of Flexible Joint Robot 
System by Backstepping Design Approach”,  IEEE 
International Conference on Robotics and Automation, 
Vol.4, pp. 3435-3440, 1997. 

[7] F. Ghorbel, J. Y. Hung, M.W.Spong, “Adaptive Control of 
Flexible Joint Manipulators”, Control Systems Magazine, 
Vol. 9, pp. 9-13, 1989. 

[8] L.C. Lin, K.Yuan, “Control of Flexible Joint Robots via 
External Linearization Approach”, Journal of Robotic 
Systems, Vol. 1 No.1, pp. 1-22, 2007. 

[9] M. W. Spong, K. Khorasani, P. V. Kokotovic, “An Integral 
Manifold Approach to the Feedback Control of Flexible 
Joint Robots”, IEEE Journal of Robotics and Automation, 
Vol. 3, No. 4, pp. 291-300, 1987. 

[10] P. Tomei, “A Simple PD Controller for Robots with Elastic 
Joints”, IEEE Trans on Automatic Control, Vol. 36, No. 
10, pp. 1208-1213, 1991. 

[11] J. S. Yeon, J. H. Park, “Practical Robust Control for 
Flexible Joint Robot Manipulators”,  IEEE International 
Conference on Robotic and Automation, pp. 3377-3382. 
2008. 

[12] M. A. Ahmad, R. M. T. Raja Ismail, M. S. Ramli and M. 
A. Zawawi, “Elastic Joint Control using Non-collocated 
Fuzzy and Filtering Scheme: A Comparative Assessment”, 
4th Asia International Conference on 
Mathematical/Analytical Modelling and Computer 
Simulation, pp: 366-371, 2010. 

[13] M. A. Ahmad, M.H. Suid, M. S. Ramli, M. A. Zawawi, R. 
M. T. Raja Ismail, “PD Fuzzy Logic with Non-collocated 
PID Approach for Vibration Control of Flexible Joint 
Manipulator”, 6th  International Colloquium on Signal 
Processing & Its Applications (CSPA), 2010. 

[14] A. Jnifene,W. Andrews, “Experimental Study on Active 
Vibration Control of a Single-Link Flexible Manipulator 
Using Tools of Fuzzy Logic and Neural Networks”, IEEE 
Trans on Instrumentation and measurement, Vol. 54, NO. 
3, pp.1200-1208, 2005.  

[15] M. A. Ahmad, R. M. T. Raja Ismail, M. S. Ramli, M. A. 
Zawawi, N. Hambali, and N. M. Abd. Ghani, “Vibration 
Control of Flexible Joint Manipulator using Input Shaping 
with PD-type Fuzzy Logic Control”, IEEE International 

0 5 10 15
-60

-40

-20

0

20

40

60

Time(sec)

(
d

e
g

)

(a) Tip Angular Position

 

 

Flexible Joint

Desired

0 5 10 15
-2

-1.5

-1

-0.5

0

0.5

1

1.5

Time(sec)


(d

e
g

)

(b) Deflection Angle 

0 5 10 15
-1

-0.5

0

0.5

1

1.5

Time(sec)

C
o

n
tr

o
l 

In
p

u
t 

(V
o

lt
)

(c) Control Input



International Journal of Robotics, Vol.2, No.1, (2011)/ M. Z. Pedram, M. Aliyari Shoorehdeli, F. Farivar, M. R. Kandroodid 

44 

Symposium on Industrial Electronics (ISlE 2009), pp.1184-
1189, 2009. 

[16] M.A. Ahmad, R.M.T. Raja Ismail, M.S. Ramli, “Optimal 
Control with Input Shaping for Input Tracking and 
Vibration Suppression of a Flexible Joint Manipulator”, 
European Journal of Scientific Research, Vol. 28, No. 4, 
pp.583-599, 2009. 

[17] M.A. Ahmad, M.S. Ramli, R.M.T. Raja Ismail, N. 
Hambali, M.A. Zawawi, “The investigations of input 
shaping with optimal state feedback for vibration control of 
a flexible joint manipulator”, Conference on Innovative 
Technologies in Intelligent Systems and Industrial 
Applications (CITISIA), pp.446-451, 2009. 

[18] F. Farivar, M. Aliyari Shoorehdeli, M. A. Nekoui, M. 
Teshnehlab, “Sliding Mode Control of Flexible Joint Using 
Gaussian Radial Basis Function Neural Networks”, 
International Conference on Computer and Electrical 
Engineering’08, pp.856 – 860, 2008. 

[19] S. Ozgoli, H.D. Taghirad, “Design of Composite Control 
For Flexible Joint Robots With Saturating Actuators”, 5th 
Iranian Conference on Fuzzy Systems, pp.75-82, 2004. 

[20] H. Chaoui, P. Sicard, A. Lakhsasi, “Reference model 
supervisoryloop for neural network based adaptive control 
of a flexible joint with hard nonlinearities”,  IEEE 
Canadian Conference on Electrical and Computer 
Engineering, vol. 4, pp. 2029–2034, 2004. 

[21]  D. Hui, S. Fuchun, S. Zengqi, “Observer-based adaptive 
controller design of flexible manipulators using time-delay 
neuro-fuzzy networks”. J. Intell. Robot. Syst.: Theory and 
Applications, Vol. 34, No. 4, pp. 453–466, 2002. 

[22] B. Subudhi,  A.Morris, “Singular perturbation based neuro-
h infinity control scheme for a manipulator with flexible 
links and joints. Robotica Vol. 24, No. 2,  pp. 151–161, 
2006. 

[23]  “Quanser Student Handout, Rotary Flexible Joint 
Module”. http://www.quanser.com 

[24] G.Chen and X.Dong, “From chaos to order: perspectives, 
methodologies and applications”, Singapore, World 
Scientific, 1988. 

[25] L. M. Pecora, T. L. Carroll, “Synchronization in chaotic 
systems”, Physics Review Letter, Vol.64, pp.821–4, 1990. 

[26] J. Yan, C. Li, “Generalized projective synchronization of a 
unified chaotic system”, Journal of Chaos, Solitons and 
Fractals, Vol.26, pp.1119–24, 2005. 

[27] J. P. Yan, C. P. Li, “Generalized projective synchronization 
for the chaotic Lorenz system and the chaotic Chen 
system”, J Shanghai Univ, Vol.10, pp299, 2006. 

[28] F. Farivar, M. Aliyari Shoorehdeli, M. A. Nekoui, M. 
Teshnehlab, “Generalized projective synchronization for 
chaotic systems via Gaussian Radial Basis Adaptive 
Backstepping Control”, Journal of Chaos, Solitons and 
Fractals ,Vol. 42, pp.826–839, 2009. 

[29] H. K. Chen, “Chaos and chaos synchronization of a 
symmetric gyro with linear-plus-cubic damping”, Journal 
of Sound and Vibration, Vol. 255, pp.719–740, 2002.  

[30] JE. Slotine, W. Li. “Applied nonlinear control”, New 
Jersey: Prentice-Hall, Englewood Cliffs, 1991. 

 
 
 
 
 
 

Biography of Authors 
 

Maysam Zamani Pedram received 
B.Sc. degree in electrical engineering 
from K.N. Toosi University, Tehran, 
Iran in 2009. He is currently a M.Sc. 
student with Department of Electrical 
Engineering, K.N. Toosi University of 
Technology, Tehran, Iran. His research 

interests are Chaos, Robotics and Dynamics and Control 
of Non-Rigid body. 
 

 M. Aliyari Sh. received the B.Sc. 
degree in electronics engineering, the 
M.Eng. degree and Ph.D. degree in 
control engineering from K. N. Toosi 
University of Technology, in 2001, 
2003 and 2008, respectively. He is 
currently an Assistant Professor with 

the Department of Mechatronics Engineering, K. N. 
Toosi University of Technology, Tehran. He is the author 
of more than 100 papers in international journals and 
conference proceedings. His research interests include 
Fault Tolerant, detection and diagnosis, Intelligent control 
of Mechatronics systems and Multi objective 
optimization.  
 

Faezeh Farivar received the B.Sc. 
degree in Biomedical Engineering from 
Science and Research Branch, IAU, 
Tehran, Iran in 2004 and M.Sc. degree in 
Mechatronics Engineering from Science 
and Research Branch, IAU, Tehran, Iran 

in 2007. She is currently a Ph.D. Candidate of Control 
Engineering with Department of Mechatronics 
Engineering, Science and Research Branch, IAU, Tehran, 
Iran. Her research interests are in the areas of 
Mechatronics, chaotic systems, hybrid control, intelligent 
control, and application of control theory in biological 
systems. 
 

Mojtaba Rostami. K received the B.Sc. 
degree in Control Engineering from 
Department of Electrical Engineering, 
K.N. Toosi University of Technology, 
Tehran, Iran in 2010. He is currently a 
M.Sc. student of Control Engineering 
with Department of Electrical and 

Computer Engineering, UT, Tehran, Iran. His research 
interests are in the areas of Mechatronics systems, hybrid 
control, and intelligent control. 


