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The main objective of this paper is to study the Euclidean displacement of a 
5-DOF parallel mechanism performing three translation and two independent 
rotations with identical limb structures-recently revealed by performing the type 
synthesis-in a higher dimensional projective space, rather than relying on 
classical recipes, such as Cartesian coordinates and Euler angles. In this paper, 
Study's kinematic mapping is considered which maps the displacements of 
three-dimensional Euclidean space to points on a quadric, called Study quadric, in 
a seven-dimensional projective space, P7. The main focus of this contribution is 
to lay down the essential features of algebraic geometry for our kinematics 
purposes, where, as case study, a 5-DOF parallel mechanism with identical limb 
structures is considered. The forward kinematic problem is reviewd and the 
kinematic mapping is introduced for both general and first-order kinematics, i.e., 
velocity, which provides some insight into the better understanding of the 
kinematic behaviour of the mechanisms under study in some particular 
configurations for the rotation of the platform and also the constant-position 
workspace. 

 

 
 

1. Introduction 

The kinematic analysis of parallel mechanisms requires 
a suitable mathematical framework in order to describe 
both translation and rotation in a most general way. This 
can be achieved by resorting to algebraic geometry[1]. 
The fundamental concept of relating mechanical 
structures, including parallel mechanisms, with 
algebraic varieties is called Study's kinematic mapping. 
This mapping associates to every Euclidean 
displacement in SE(3),  , a point c  on a subset of a 

real projective space 7P , called the Study quadric
72

6 PS   [2, 3]. This subject, i.e., algebraic geometry, 

occupies a central place in modern mathematics and has 
multiple conceptual connections with such diverse fields 
as geometric design, coding theory and mechanisms and 
robotics. Our interest toward combining and then 
applying algebraic geometry and Study's kinematic  
mapping to the kinematic analysis is twofold:   
 1)  Using the superabundance of variables which 

eliminates the need to resort to trigonometric 
expressions and produces homogeneous equations; 
 2)  As opposed to formulations based on 
three-dimensional Euclidean space, algebraic geometry 
provides a better understanding of the kinematic 
properties of mechanisms.  
Returning to the kinematic analysis of parallel 
mechanisms, this paper aims first at establishing the 
relations which allow the general and first-order 
kinematic mapping of three-dimensional Euclidean 
space to the Study parameters and then the Forward 
Kinematic Problem (FKP) for the topologically 
symmetric 5-DOF parallel mechanisms performing a 
specific motion patterns which are described in what 
follows. In general, 5-DOF parallel mechanisms are a 
class of parallel mechanisms with reduced degrees of 
freedom which, according to their mobility, fall into 
three classes [4]:   
1)  Three translational and two rotational freedoms 
(3T2R); 

2)  Three rotational and two planar translational 
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freedoms (3R2 pT ): 

a) (3R2 i
pT ) with instantaneous planar motion;  

b) (3R2
f

pT ) with fixed planar motion; 

3) Three rotational and two spherical translational 

freedoms (3R2 sT ). 
For the 5-DOF parallel mechanisms, this paper deals 
with the first one, i.e., the one performing 3T2R motion 
pattern. Geometrically, the 3T2R motion can be made 
equivalent to guiding a combination of a directed line 
and a point on it. Accordingly, the 3T2R mechanisms 
can be used in a wide range of applications for a 
point-line combination including, among others, 5-axis 
machine tools [5, 6], welding and conical spray-gun. In 
medical applications that require at the same time 
mobility, compactness and accuracy around a functional 
point, 5-DOF parallel mechanisms can be regarded as a 
very promising solution [7]. 
Based on the results obtained from type synthesis and 
the recent study conducted in [8-11], two kinematic 
arrangements may be of practical interest for symmetric 
5-DOF parallel mechanisms (3T2R), namely: 5-PRUR 
[10] and 5-RPUR [8, 9]. In this paper, as a case study, we 
consider 5-RPUR. Here and throughout this paper, P 
stands for a prismatic joint R for a revolute joint and U 
for an universal joint. To distinguish the actuated joint 
from a non-actuated one, which is referred to as passive 
joint, the actuated one is underlined, for instance P. 
It should be noted that the FKP of 5-DOF parallel 
mechanisms (3T2R) was solved in [10, 12]. The latter 
study revealed that this kind of mechanisms have up to 
1680 finite solutions and for a simplified design a 
univariate expression of degree 220 was obtained. Of 
even more importance, for a general design 208 real 
solutions were found for the FKP. In the latter studies the 
emphasis was placed on solving the FKP of a 5-PRUR 
parallel mechanism, by means of Study's kinematic 
mapping [10, 12-16]. 
The remainder of this paper is organized as follows. 
First, to lay down the essential concept for the projective 
space, Study's kinematic mapping is given. Then the 
architecture of the 5-RPUR parallel mechanism is 
reviewed. The constraint and FKP expressions are 
presented based on the results of some recent studies. 
Then, the general kinematic mapping is introduced 
which makes it possible to find the position and 
orientation (pose) of the mobile platform by having in 
place its corresponding information in the projective 
space, i.e., the Study's parameters, and vice versa. The 
first-order kinematic constraint of the 5-DOF parallel 
mechanism under study is obtained by means of Study's 
parameters and different sets are represented which fully 
describe Study's parameters and their corresponding rate 
changes. Moreover, the regularity of the mapping 
obtained is examined and some particular configurations 
are treated in detail. Then, the constant-position 
workspace is investigated using the relations given for 
the kinematic mapping.  
 
2. Study’s Kinematic Mapping 
 The Euclidean group is the group of transformations of 

the vector space en
R  that preserve the Euclidean 

metric. This group is denoted as SE(3) for 3=en  

which represents the complete rigid body motion in 
space. An Euclidean displacement is a mapping:  

,,: 33 axAx  RR                       (1) 

 where A  is a proper orthogonal three by three matrix. 

The mapping of SE(3) onto the points of 
72

6 PS  is 

called the kinematic mapping. In turn, Study's kinematic 
mapping is a mapping of an element   of the 

Euclidean displacement group SE(3) into a 

7-dimensional projective space, 7P  [3]. The 

homogeneous coordinates of a point in 7P  are given 
by ):::::::(= 32103210 yyyyxxxxs . The 

kinematic pre-image of s  is the displacement   

described by the transformation matrix: 
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 Note that the lower right three by three sub-matrix is a 
proper orthogonal matrix if:  

0,=33221100 yxyxyxyx 
                       

 (4) 

 and not all ix  are zero. If these conditions are fulfilled 

Tyx )::( 30   are called Study parameters of the 

displacement  . Equation (4) defines a quadric, the 

so-called Study quadric, 
2
6S , which lies on a seven 

dimensional kinematic space, 7P . Thus the range of the 

kinematic mapping is the Study quadric, 
2
6S , minus the 

three dimensional subspace defined by:  
0.====: 3210 xxxxE x                      (5) 

2
6S  is called Study quadric and xE  is the exceptional 

or absolute generator. One can normalize the parameters 
such that 1=H , then the coordinate 0x  represents 

the cosine of the half rotation angle. Note that there are 
other possibilities to normalize. 
Reaching this step, the prime concern is with obtaining 
the correspondence between the Study parameters and 
the component of a given matrix which represents the 

motion of a rigid body. Let 40,=,][= jiaA  be this 

general matrix which can be obtained using the D-H 
convention. This mapping consists in re-parametrization 
of the Euclidean displacements using algebraic 
parameters. It should be noted that the quadruple 

):::(= 3210 xxxxx  is known as the Euler 



International Journal of Robotics, Vol.2, No.1, (2011)/ M. Tale Masouleh, C. Gosselin 

28 

parameters and the best way, i.e., free of parametrization 
singularity, of computing the Euler parameters was 
already known to Study [2]. He demonstrated that for 
any Euclidean transformation, in this case A , the 
homogeneous quadruple ):::(= 3210 xxxxx   can be 

obtained from at least one of the following proportions: 

332211322313311221
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          (6)  

 

It can be shown that all four proportions are valid 
representations [15]. In fact, each proportion is not 
singular-free per se. However, the set as a whole is free 
of any parametrization singularity. The singularity for 
one proportion occurs when the quadruple vanishes, 

0):0:0:(0=x , i.e., xEx . In this case, one should 

use the above proportions until a non-vanishing 
quadruple is obtained. The reason for which this set of 
representation is singular-free is that it is impossible that 
all the proportions vanish simultaneously. In the case 
that the first three proportions go to zero we resort to the 
last proportion which yields 1):0:0:(0=x . The 

four remaining Study parameters 
):::(= 3210 yyyyy  can be computed from: 
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3. 5-RPUR Parallel Mechanisms  
 

A. Architecture Review and Kinematic Modelling  

Figures 1(a) and 1(b) provide respectively a 

representation of a RPUR limb and a 5-DOF parallel 

mechanism that can be used to produce all three 

translational DOFs plus two independent rotational 

DOFs (3T2R). The Cartesian coordinates of the 

end-effector are noted ),,,,( zyx . In the latter 

notation, Tzyx ],,[=p  represents the translational 

DOFs, a position vector of a chosen point on the 

end-effector, with respect to the fixed frame O , as 

shown in Fig. 1(a), while ),(   stand for the 

orientation DOFs around axes )( 1ey  and x , 

respectively. The rotation sequence between the desired 

orientation of the platform and angles   and   is the 

first rotation, of angle  , about 2e  followed by a 

second rotation of angle   about 1e . 
 
 

 
     (a)One limb                        (b) CAD 
model 
Fig.1a) Kinematic arrangement for a RPUR limb and  (b) a CAD 

model for a 5-RPUR parallel mechanism. 

Based on the latter rotation sequence the rotation matrix 
can be expressed as follows:  

.
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Q          (8) 

Vectors 1e  and 2e  are unit vectors respectively along 

the first and last revolute joints of each leg. They are the 
same for all leg, by construction. We define respectively 

Tzyx ],,[= p  and T
zyx ],,[= ω  as the 

reference point p  of the platform velocity and the 

angular velocity of the mobile platform. 
This mechanism consists of an end-effector which is 
linked by 5 identical limbs of the RPUR type to a base. 
The input of the mechanism is provided by the five 
linear prismatic actuators. From the type synthesis 
presented in [17], the geometric characteristics 
associated with the components of each leg are as 
follows: The five revolute joints attached to the platform 
(the last R joint in each of the legs) have parallel axes, 
the five revolute joints attached to the base have parallel 
axes, the first two revolute joints of each leg have 
parallel axes and the last two revolute joints of each leg 
have parallel axes. It should be noted that the second and 
third revolute joints in each leg are built with 
intersecting and perpendicular axes and are thus 
assimilated to U joints. Further results regarding the 
kinematic properties, such as the solution of the IKP, 
FKP and the determination of the constant-orientation 
workspace can be found in [10, 12, 18].  
    
B. Forward Kinematic Problem 
 The FKP of the 5-RPUR has been extensively studied 
in [10, 12] which revealed that the forward kinematic 

expression, pF , of the principal limb, a limb for which 

the D-H parameters are defined for, is of degree four 

where the constraint expression, C , is a second degree 
expression:  
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Moreover, from the latter studies, 1680 finite solutions 
was found for the FKP where for a given design and 
input parameters 208 real solutions was reported (This is 
not an upper bound for the number of the real solutions). 
However, there are still some gaps for the general and 
first-order kinematic mapping of such mechanisms 
which is the subject of the following sections. 

 
C.  Mapping between Study Parameters and 
Three-dimensional Euclidean Space 
In this section, we attempt to set up correspondences 
between the Study parameters and the three dimensional 
Euclidean space and vice versa. These transformations 
can be used to convert the solutions obtained for the FKP 
which are explored in projective space, i.e., Study 
parameters, in order to ensure their validity and to 
provide a physical sense to the solutions. 
1)  Cartesian representation of Study’s parameters: 

Mathematically, the mapping from an element of 7P , 
7Ps , into a three-dimensional real vector space, 

called Euclidean three space, SE(3), is defined as:  

,)(),((3),: 57 RmmSEPm sss sss (11) 

 where 5R , stands for the five-dimensional real array 
space representing the three translations and two 
permitted rotational DOFs. The first step is to compute 
the rotational DOFs ),(  . To this end, the lower three 

by three sub matrix of Ω , Now, the inspection of the 

components of Q  and those of tΩ  leads to a unique 

solution for   and  , namely:  

), ,2(arctan= 10322031 xxxxxxxx         (12) 

). ,2(arctan= 20311032 xxxxxxxx         (13) 

To compute the position of the platform, Tzyx ],,[=p

, for a given set of ]:::[= 3210 xxxxx  obtained above, 

one should use the following [15]:  
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One could consider any three equations in order to 
obtain a unique set of solutions for ),,( zyx  for a 

given s . By considering the first four equations it 
results that the determinant of this system of equations 
is:  
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2
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For the considered system of equations, once 0=3x  

the system of equations degenerates. Using the fact that 
this system of equation is overdetermined, one can 
establish another system of equations which avoids this 
singular condition. For instance in the previous case 
when 0=3x  one could consider a system of equations 

in which the first equation is replaced by the fourth one 
and the determinant becomes:  

).( 2
3

2
2

2
1

2
00 xxxxx                            (16) 

 It follows that when 0=3x  then 
2

2
=0 x  and 

the system of equations is of full rank. Once the latter 
system of equations is solved for ),,( zyx  the position 

of the platform, p , with respect to the base frame 

presented in Fig. 1(a) becomes:  

.],,[= Txzyp                                    (17) 

Following the same procedure, one can transform the 
vectors describing the geometry of the base and 
platform, written in terms of Study's parameters, 

],,[= 61 iii bb b  and ],,[= 61 iii mm m , 

respectively, into the vectors describing them in the 
Cartesian coordinates, ir  and i's  (See Fig. 1). 

Skipping the mathematical derivations one obtains:  
.]2 ,2 ,2[=,]2 ,2 ,2[= 657576

T
iiii

T
iiii mmm'bbb  sr (18) 

 It is recalled that due to the parallelism of the axes 
attached to the base and platform, one has: 

0==== 4321 iiii bbbb  and 

0==== 4321 iiii mmmm .  

2) Representation of Study’s Parameters in Terms of 
Three-dimensional Euclidean Space:Mathematically, 

the mapping from an element of SE(3), 5R , into 

seven-dimensional space, 7P , is defined as:  

).)((,(3): 7 s kk mPSEm      (19) 

The mapping from Cartesian space to Study's parameters 
requires further mathematical manipulations. Without 
loss of generality, assume the homogeneous condition to 
be:  
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 From Eqs. (12) and (13) it follows that:  
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 Squaring both sides of the above expressions and 
adding them results in:  
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 Combing the homogeneous and constraint equation, 
Eq. (10), one has: 

,
2

1
=,

2

1
= 2

3
2
0

2
2

2
1 xxxx                     (23) 

 where one can obtain the following for and 0x  and 

3x :  
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 In the above, {0,1}=1  and {0,1}=2  stand for the 

two distinct solutions. As it can be observed from the 
above, this mapping admits two distinct solutions for 

3x  and 0x  for a given pose of the platform in the 
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Cartesian space. These two distinct solutions can be 

classified as follows: (a) 0>  then 21 =   and 

(b) 0  then 21   . Handling the values for 

0x  and 3x  and substituting into Eq. (12) leads to:  

,=sin,=cos 10322031 xxxxxxxx      (25) 

 which, once solved for 1x  and 2x  yield:  

).cossin(=),sincos(= 032031  xxxxxx   
(26) 

 
The transformation for the fixed parameters ir  and i's
, vector representing respectively the geometry of the 
base and platform as depicted in Fig. 1, can be readily 
obtained using Eq. (18). The rotational parameters, i.e, 
x  and ]:::[= 3210 yyyyy  can be found by back 

substitution into Eq. (14). 
Thus from above it follows that the mapping from the 
Study parameters to the Cartesian space is one to one 
and the converse, i.e., from Cartesian space to Study's 
parameters is two to one. This is called double covering 
of the Euclidean displacement group SE(3). For 
example: The dual quaternions are a double covering of 
SE(3). 

 
D.  First-order Kinematic Mapping and Different sets 
in P 7for describing xx   

We direct our attention to a formulation based on the 
projective space which leads to define different sets in 
order to fully determine the Study parameters and their 
corresponding time rate of change. Combining the 
homogeneous and constraint condition leads to:  
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Differentiating the above with respect to time results in :  
0.=0,= 22113300 xxxxxxxx              (28) 

Then, combining the above with Eqs. (27) leads to the 
following system of equations:  
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The above allows to conclude that prescribing 

]:::[= 3210 xxxx x  results in two solutions to x :  







































2
2

2
1

1
2

2
2

2
1

2
1

2
3

2
0

0
3

2
3

2
0

3
0

2

2
=

2

2
=

2

2
=

2

2
=

xx

x
x

xx

x
x

xx

x
x

xx

x
x

















(30) 

 
From Eq. (29), one can define different sets to fully 
determine ]:[= xxxx  . In order to obtain these sets, we 

define 1pX  and 2pX  respectively as the set of 

parameters which allow to solve the first and second 
system of equations presented in Eq. (29) as follows:  

 ,],[],,[],,[],,[= 330330001 xxxxxxxxX p             (31) 

 .],[],,[],,[],,[= 121221112 xxxxxxxxX p             (32) 

 Consequently, a set, called pX , which is the 

two-by-two combination of components of 1pX  and 

2pX  allows to fully determine xx   and is formulated 

as follows:  

].,,,[)(= 3210
2

21 xxxxXXX ppp              (33) 

 
Thus it can be inferred that 21 different sets exist in order 
to fully determine x  and x . It follows that the 

rotation and angular velocity of the mobile platform can 
be fully prescribed either by prescribing all the time 
derivatives of the Study parameters, x , or by a 

combination of some Study parameters and their time 

derivatives, 
2

21 )( pp XX  . 

 
E.  First-order Kinematic Mapping for the Angular 
Velocity 
Here, we direct our attention to the mapping of the 
first-order kinematics from the time derivative of the 
Study parameters, x  and ],,,[= 3210 yyyy y , to the 

velocity and angular velocity Tzyx ],,[= p  and  . 

1) Mapping  of  the  Time  Derivative  of  
Three-dimensional  Euclidean  Space  to  Study’s  
Parameters: 
 Referring to Eq. (24) and upon differentiating with 
respect to time, and skipping mathematical derivations, 
one has:  
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1)(=
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1
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x
x
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 As it can be observed, the above fails to result in a 
solution for 3x  when 0=)(sin1    which in 

the projective space corresponds to a configuration for 
which 0=3x . In order to avoid such a configuration 

the corresponding value for )(cos    should be 

found by referring to Eq. (22):  

.2122=)(cos 2
33 xx                       (35) 

Upon substituting the above into Eq. (34) and replacing 
the corresponding expression found for 3x  in Eq. (24) 

leads to:  

,)(sin1
4

1)(= 1
3  





x                  (36) 

 which is obviously singularity-free. Following the same 
reasoning it follows that:  

.)(sin1
4

1)(= 1
0  





x                (37) 

 Upon differentiating Eq. (26) with respect of time one 
could obtain the relations which map the 

three-dimensional Euclidean space to 1x  and 2x . The 

following can be obtained:  



International Journal of Robotics, Vol.2, No.1, (2011)/ M. Tale Masouleh, C. Gosselin 

31 

 

,cossinsincos= 00331  xxxxx    (38) 

 

.sincoscossin= 00332  xxxxx    (39) 

 It should be noted in the above that one should use 
respectively Eqs. (36) and (37) for the mapping of 3x  

and 0x  and Eq. (24) for 3x  and 0x . 

2)  Mapping of the Time Derivative of the Study 
Parameters to the Three-dimensional Euclidean 
Space: 

 From Eq. (12) it follows that:  

),(=sin 22203131 xxxxxxxx                 (40) 

).(=cos 10103232 xxxxxxxx               (41) 

 Squaring both sides and then adding leads to:  

 .)()(4= 2
10103232

2
22203131

2 xxxxxxxxxxxxxxxx   (42) 

 A similar approach yields to the following for  :  

 .)()(4= 2
20203131

2
10103232

2 xxxxxxxxxxxxxxxx   (43) 

where, finally, upon skipping some mathematical 
manipulations, one has:  

 ,2= 2
3

2
0

2
2

2
1 xxxx                     (44) 

 .2= 2
3

2
0

2
2

2
1 xxxx                     (45) 

 
F.  First-order Kinematic Mapping for the Point 
Velocity 
The relations allowing the mapping of angular velocity 
from the projective space into the three-dimensional 
Euclidean space, and vice versa, can be readily extended 
to obtain the mapping for the translational velocity. This 
can be done by differentiating Eq. (14) with respect of 
time. 
G.  From three-dimensional Euclidean Space to Study’s 
Parameters 
In this case the pose of the platform, θ),z,y,(x,   and 

the time rate of change of its coordinates, ),,,,(   zyx  

are given. Upon differentiating Eq. (14) with respect to 
time one could readily find y .  

H.  From Study’s Parameters to the Three-dimensional 
Euclidean Space 
In this case the time derivative of Eq. (14) with respect to 
time should be solved for ),,( zyx   by having in hand 

s , x  and y . Finally, based on Eq. (17), it follows 

that:  

.],,[= Txzy p                                     (46) 

 It should be noted that in the case that the above system 
of equation is rank deficient one should proceed as 
explained in section 2.3.1. As a consequence the above 
mappings are both singularity-free. 

 
4.  Some Applications of Kinematic Mapping 
Generally, in the context of parallel mechanisms, the 
Study kinematic mapping is used to investigate the FKP 
and due to its mathematical complexities, initiated 
several researches both in mathematics and mechanics. 

From the begining of this section some insight was given 
for the FKP of the 5-DOF parallel mechanism under 
study where for the next mechanism more details will be 
provided. In what follows, we resort to Study kinematic 
mapping in order to first explore some kinematic 
properties of the 5-DOF parallel mechanism under study 
for some particular rotational configurations, which 
cannot be obtained by entailing the study in 
three-dimensional Euclidean space. Then, a subset of 
workspace, called the constant-position workspace, is 
elaborated.  
A.  Particular Configurations for the Kinematic 
Mapping of 5-RPUR Parallel Mechanisms 

As stated before, the sets belonging to pX  may fail to 

fully determine xx  . These configurations are treated 

hereafter for ],,,[ 3210 xxxx   and the set belonging to 
2

21 )( pp XX  . It should be noted that these 

configurations should not be interpreted as singular 
configurations and that there are configurations which 
admit  
infinitely many solutions.   
1) Particular configuration for ],,,[ 3210 xxxx  :  

In general for a given x , which stands for the 

angular velocity of the platform, one can readily 
determine its corresponding x . In fact, if x  is 

prescribed then one could readily find x  from Eq. 

(30) and also   and   respectively from Eqs. 

(44) and (45). Then having x  by using Eqs. (12) 

and (13) leads to obtaining   and  . This means 

that x  is the central quantity of the mapping. This 

issue is depicted in Fig. 2. As it can be observed 
from the latter tree-model having in place x  

allows to find x , ),(   and ),(   . As 

mentioned above there are some configurations for 
which the mapping would have infinitely many 
solutions. Inspecting Eq. (30) it follows that in the 
following case the mechanism would have infinitely 
many solutions for the rotational DOF:  

0,=0][0,=],[ 30   xx                    (47) 

0,=0][0,=                               (48) 

0.==0]0,0,[0,=                         (49) 

 
Fig.2Schematic representation of the mapping of the 

rotational parameters. 
  

These configurations can be interpreted as follows: the 
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angular velocity as given above, can be produced for any 
of the orientations of the mechanism. 

2.  Particular configuration for 
2

21 )( pp XX  : 

In this case, for a configuration in which one of the 
Study parameters becomes zero, then it would 
impossible to fully determine x . Let's consider 

respectively the first and third component of 1pX  and 

2pX  which results in ],,,[ 2020 xxxx  . In the case that 

0=0x  then 0x , and as consequence x , may have 

infinitely many solutions. These configurations and their 
influences in both projective space and three 
dimensional Euclidean space can be summarized as 
follows:  

,
2

=0,=0= 30

 xx 
       

(50)

,
2

=0,=0= 21

 xx 
               

(51) 

,
2

=0,=0= 12

 xx                  (52) 

.
2

=0,=0= 03

 xx                (53) 

The above configurations can be interpreted as follows: 
the mechanism is able to perform any angular velocity 

for   and  .  

B.  Constant-position Workspace 
This subset of workspace consists of the feasible 
orientations of the platform for a prescribed position of 
the platform. Usually, it is very cumbersome to assess 
geometrically such a workspace and it is preferable to 
perform this analysis using numerical methods. In 
three-dimensional Euclidean space, this can be 

formulated as obtaining intervals for   and   for 

which all the actuators satisfy the stroke limits. It should 
be noted that the constant-orientation workspace was 
investigated in detail [19] where Bohemian domes came 
up for the vertex space.  

 
Fig.3Constant-position workspace for a 5-RPUR parallel 

mechanism. The grey zones are not permitted. 

It should be noted that the analysis of the 
constant-position workspace in three-dimensional 
Euclidean space is a delicate task. Figure 3 represents 
the constant-position workspace for a 5-RPUR parallel 
mechanism for a given position which is plotted in a 
two-dimensional Cartesian coordinates. 
It would be more advantageous and enlightening to 
explore such a problem in seven-dimensional kinematic 
space and by resorting to the kinematic mapping 
presented previously it can be readily converted into 
three-dimensional Euclidean space. Moreover, this 
approach results in a meaningful representation of the 
orientation workspace, which is an angular travel around 
a circle, Fig. 4. Usually, the results of 
constant-orientation workspace are plotted in a Cartesian 
space which is more meaningful for the position purpose 
and few appropriate environments have been reported in 
the literature for the constant-position workspace, for 
instance the study elaborated in [20] for spatial parallel 
mechanisms. To follow the proposed approach, the 
given position of the platform should be expressed in 
terms of Study parameters. This can be achieved using 
Eq. (14) which is recalled here:  

.=2,=2

,=2,  =2

21033102

32013210

xxyxzxyxxzxyxy

yxzxxxyzxyxxxy




(54) 

For a given position vector ),,( zyx  and upon 

substituting  

the y  obtained from the above relations into pF , one 

obtains an expression which is a function of only x  

and 
 

p . To be consistent with the number of permitted 

orientational DOFs, based on Eq. (27), the following 

substitution can be done into )(xFp  which results in 

only two unknowns, namely   and   in 

trigonometric forms:  

.sin
2

2
=,cos

2

2
=

,sin
2

2
=,cos

2

2
=

21

30





xx

xx
                    (55) 

 
Fig.4: Spherical parameters for representing the rotational 
capabilities. 
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It should be noted that the obtained solutions for   and 

  cannot be plotted along the two constraint circles 

since they are not decoupled. To do so, we use a 
spherical representation which is notationally depicted 
in Fig. 4. Then by applying the tan-half substitution for 









2
tan=

 t
 and 








2
tan=

t
, one obtains:  

0.=),,( pttp
O F                                 (56) 

The above corresponds to the principal limb and 
applying the same procedure explained in [12] for 
obtaining the forward kinematic expressions for other 
limbs, one can readily find the corresponding 
expressions for the other four limbs:  

,5.2,=0,=),,( jF jttj
O                    (57) 

In what concerns the degree of the above 

expressions, it follows that the power of p  and j  

are all even numbers. Thus by applying a simple 

substitution of the type pp  =2
 and jj  =2

, 

p
O F  can be reduced to a second degree polynomial 

expression. Thus one should solve Eqs. (56) and (57) 
with respect to the extension of the actuators in order to 
find the possible angular travels, i.e., t  and t  which 

can be readily transformed to   and  . Figure 5 

represents an example for the constant-position 
workspace where the workspace is the whole surface of 
the sphere except the regions which do not include the 
arrows. 

 
Fig.5: Constant-position workspace for a general 5-RPUR parallel 

mechanism. 

 

5. Conclusions 
This paper investigated the kinematic mapping of the 
constraint parameters and the forward kinematic 
problem of a 5-DOF parallel mechanism with identical 
limb structures performing a 3T2R motion pattern. The 
mappings from the projective space, Study parameters, 
to the three-dimensional Euclidean space, and vice 
versa, were given. Following a similar approach, the 
first-order kinematics, i.e., velocity mapping was 
elaborated. By combining the results obtained for both 
general and first-order kinematic mapping some 
particular configurations were obtained and physical 
interpretations were associated to them which would 

have been difficult without resorting to such a mapping. 
Moreover, the constant-position workspace for the 
5-DOF parallel mechanism under study was 
investigated. Ongoing work includes the optimum 
synthesis of the mechanism under study. 
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